
Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação em Informática Aplicada

Waldeck Antônio de Melo Lindoso Júnior

VERIFYING ROBOTIC DESIGNS USING A DIAGRAMMATIC

LANGUAGE FOR PROPERTIES

M.Sc. Dissertation

Recife
Aug 2022

Universidade Federal Rural de Pernambuco

Programa de Pós-Graduação em Informática Aplicada

Waldeck Antônio de Melo Lindoso Júnior

VERIFYING ROBOTIC DESIGNS USING A DIAGRAMMATIC
LANGUAGE FOR PROPERTIES

A M.Sc. Dissertation presented to the Programa de Pós-

Graduação em Informática Aplicada of Universidade Fed-

eral Rural de Pernambuco in partial fulfillment of the re-

quirements for the degree of Master of Science in Computer

Science.

Advisor: Sidney de Carvalho Nogueira

Co-Advisor: Lucas Albertins de Lima

Recife
Aug 2022

Dados Internacionais de Catalogação na Publicação
Universidade Federal Rural de Pernambuco

Sistema Integrado de Bibliotecas
Gerada automaticamente, mediante os dados fornecidos pelo(a) autor(a)

L747v Lindoso Júnior, Waldeck Antônio de Melo
 Verifying robotic designs using a diagrammatic language for properties / Waldeck Antônio de Melo Lindoso Júnior.
- 2022.
 56 f. : il.

 Orientador: Sidney de Carvalho Nogueira.
 Coorientador: Lucas Albertins de Lima.
 Inclui referências e apêndice(s).

 Dissertação (Mestrado) - Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Informática
Aplicada, Recife, 2022.

 1. RoboChart properties. 2. Activity diagram. 3. Sequence diagram. 4. CSP. 5. FDR. I. Nogueira, Sidney de
Carvalho, orient. II. Lima, Lucas Albertins de, coorient. III. Título

 CDD 004

I dedicate this dissertation to my family for their love

throughout my life, my friends for the patience and support,

and professors for the knowledge and inspiration.

Acknowledgements

I would like to thank my parents and family for their encouragement and support.
My thanks to my supervisors Sidney de Carvalho Nogueira and Lucas Albertins de Lima.

Thank you for sharing your knowledge, enthusiasm and for the time we shared together. I learned
and grew a lot.

Thanks to my professors at PPGIA (Postgraduate Program in Applied Informatics) and
to all my dear colleagues who shared this arduous and rewarding journey with me.

Special thanks to Ana Cavalcanti, Augusto Sampaio and Madiel C. Filho for their
suggestions, contributions, shared time and feedback regarding this work. Thank you to everyone
who contributed to my academic and personal growth. You will always be remembered.

Finally, my deepest gratitude to God for making all this possible, giving me strength and
courage to carry out this work.

“(...) Life is made of moments, moments that we have to go through, whether

good or not, for our learning. Nothing is by chance. We need to do our part,

play our part on the stage of life, remembering that life doesn’t always follow

our will, but it is perfect in what it has to be."

—CHICO XAVIER

Resumo

RoboChart é uma notação diagramática no estilo de UML para projetar sistemas robóticos.
Possui uma semântica bem definida na notação de CSP o que permite a verificação automática
das propriedades funcionais utilizando a ferramenta FDR. Apesar de RoboChart ser baseado em
UML, propriedades específicas de modelos RoboChart, que são específicas de aplicações, pre-
cisam ser especificadas usando a notação de CSP; contra-exemplos gerados pela ferramenta FDR
são especificados na sintaxe de CSP. Consequentemente, o projetista deve estar familiarizado
com CSP para definir propriedades e entender os contra-exemplos.

Este trabalho propõe uma abordagem para a verificação automática de propriedades
específicas de aplicação para RoboChart. A abordagem introduz uma notação diagramática, cuja
semântica é definida na notação de CSP, para expressar propriedades de um modelo RoboChart.
A notação mistura elementos sintáticos da notação de Diagrama de Atividades de UML com
elementos de RoboChart. A notação proposta facilita a especificação dos padrões de abstração
usados na definição de propriedades para modelos RoboChart.

Como ferramenta de suporte, desenvolvemos um plug-in para a ferramenta de modelagem
Astah que traduz uma propriedade diagramática descrita na notação proposta para a respectiva
semântica CSP e invoca o verificador de refinamentos FDR para verificar se a semântica do mod-
elo RoboChart refina a propriedade especificada com a notação introduzida. Contra-exemplos
são analisados e apresentados na notação de diagramas de sequência. A abordagem apresentada
permite ao projetista especificar, verificar propriedades e interpretar contra-exemplos no nível
diagramático. Como parte da validação, apresentamos um estudo de caso que mostra a aplicação
da abordagem para modelar e verificar propriedades de dois sistemas robóticos projetados com
RoboChart.

Palavras-chave: Propriedades de modelos RoboChart, Diagrama de Atividades, Diagrama de
Sequência, Astah, CSP, FDR

Abstract

RoboChart is a diagrammatic notation in the style of UML for the design of robotic
systems. It has a well-defined semantics in the notation of CSP that enables the automatic
verification of functional properties using the FDR tool. Nonetheless, RoboChart is based
on UML, application-specific properties of RoboChart models need to be specified using the
CSP notation; counterexamples yielded by the FDR tool are specified in the CSP semantics.
Consequently, the designer must be familiar with CSP to define properties and understand
counterexamples.

This work proposes an approach for the automatic verification of application-specific
properties for RoboChart. The approach introduces a diagrammatic notation, which has CSP
as the underlying semantics, to express behaviour that characterises properties for a RoboChart
model. The notation mixes standard elements of the activity diagram notation with elements
of RoboChart. The notation eases the specification of abstraction patterns used in defining
properties for RoboChart models.

As tool support, we develop a plug-in for the Astah modelling tool that translates the
proposed diagrammatic property to the respective CSP semantics and calls the FDR refinement
checker to verify whether the semantics of the RoboChart model refines the property specified
with the introduced notation. Counterexamples are parsed and presented in the notation of
sequence diagrams. The presented approach allows the designer to specify, verify properties and
interpret counterexamples at the diagrammatic level. This work presents a case study that shows
the application of the approach to model and verify properties of two robotic systems designed
with RoboChart.

Keywords: RoboChart properties, Activity diagram, Sequence diagram, Astah, CSP, FDR

List of Figures

1.1 Checking properties in RoboChart . 13
1.2 Checking properties in RoboChart - using the plugin 14

2.1 CFootBot module . 16
2.2 SimFW robot - controller . 16
2.3 SimFW robot - state machine . 17
2.4 Activity diagram nodes. 18
2.5 Example of a sequence diagram. 19

3.1 Property for SimFW. 24
3.2 Property semantics in CSP. 25

4.1 Plug-in Architecture. 33
4.2 Menu for setting the path to the RoboChart file. 34
4.3 Checking a RoboChart property in Astah. 36
4.4 Counterexample as displayed in Astah. 37

5.1 Robot movement . 39
5.2 State machine PathPlanningSM — RoboChart Model for SPVC 40
5.3 ReturnToCharge Property . 41
5.4 NoFall Property . 42
5.5 MovementShape Property . 42
5.6 Chemical Detector - Robochart model . 43
5.7 Spec1 Property . 44
5.8 Commands Property . 44
5.9 GasLight Property . 44
5.10 Init Property . 45
5.11 Counterexample ReturnToCharge property . 45

A.1 Angular - Channels and datatypes . 51
A.2 Angular - Main Process and Alphabet diagram 51
A.3 Angular - Process diagram and Token manager 52
A.4 Angular - Refinement and composeNodes . 52

List of Tables

3.1 Property notation . 22
3.2 Operation call - CSP Semantics . 27
3.3 Input with value - CSP Semantics . 27
3.4 Output with value - CSP Semantics . 27
3.5 Simple input - CSP Semantics . 28
3.6 Simple output - CSP Semantics . 28
3.7 Input with range - CSP Semantics . 28
3.8 Output with range - CSP Semantics . 29
3.9 Call behaviour with the <<ANY>> stereotype — CSP Semantics 30
3.10 Node reached by an edge with <<UNTIL>> — CSP Semantics 30

6.1 Related Work . 47

List of Acronyms

UML Unified Modeling Language . 12

CSP Communicating Sequential Processes 12

FDR Failures-Divergences Refinement . 12

DSL Domain-Specific Language . 12

JVM Java Virtual Machine . 33

API Application Programming Interface . 33

UI User Interface . 34

LTS Labelled Transition System . 35

Contents

1 Introduction 12

2 Background 15
2.1 RoboChart . 15
2.2 UML Diagrams . 17
2.3 CSP notation . 19

3 Diagrammatic Language for properties 21
3.1 Language syntax . 21
3.2 Language semantics . 23

4 Tool Support 33
4.1 Architecture . 33
4.2 Parser module . 35
4.3 FDR Bridge module . 35
4.4 Robochart property analysis . 35
4.5 Traceability . 36

5 Case Study 38
5.1 Solar Panel Vacuum Cleaner . 38
5.2 Chemical Detector . 41
5.3 Verification of properties . 43

6 Related Work 46

7 Conclusion 48

APPENDICES

A APPENDIX 50
A.1 CSP specification for the Angular property . 50

References 53

121212

1
Introduction

In the context of critical systems, where failures can result in serious problems, such as
the loss of human lives or financial loss, it is crucial to ensure that robot software satisfies the
expected properties.

Due to the high complexity of robotic controller software, several Domain-Specific
Language (DSL) for modelling and simulation [2, 27, 7] for robots have been proposed to
support the validation and verification of robotic controllers. Test and simulation are often used
to verify robots. However, they cannot ensure that the system has the expected properties. Thus,
formal verification techniques become fundamental to ensure that such properties hold.

RoboChart [23] is a DSL that uses a diagrammatic notation based on state machines
notation from Unified Modeling Language (UML) [26] to describe robot behaviour. The prop-
erties of RoboChart models are verified through formal verification; this contrasts with DSLs
for the design of robotic simulation. RoboTool1 provides a graphic editor for RoboChart and
automatically generates the Communicating Sequential Processes (CSP) [29] specification for
RoboChart models. This tool is integrated with the Failures-Divergences Refinement (FDR)
refinement checker [8] that checks classical properties (for instance, deadlock freedom), as
well as application-specific properties that are stated as process refinement assertions of CSP
specifications. A property is defined as a set of traces that must be refined by the traces from the
RoboChart model.

A current limitation of RoboTool is that the specification of domain-specific properties is
defined in the notation of CSP. Figure 1.1 shows the flow the property designer follows to specify
and verify an application-specific property for RoboChart. In the current flow, the properties are
defined as CSP processes whose alphabet follows the encoding for RoboChart. Additionally,
the counterexample yielded by the FDR tool is described in terms of the CSP encoding for the
RoboChart model. The property designer must be familiar with CSP operators and the CSP
alphabet representing the RoboChart elements relevant to the property. He uses the CSP notation
to define the property and to interpret the FDR counterexample trace if the property does not hold.
As reported in [24], unfamiliarity with formal notations can result in challenges for RoboTool

1https://robostar.cs.york.ac.uk/robotool/

https://robostar.cs.york.ac.uk/robotool/

13

users during the verification process. Since RoboChart is a diagrammatic notation, it would be
more convenient to express properties and read the counterexample using some diagrammatic
notation that hides details of the CSP semantics and is similar to some well-accepted modelling
language.

Figure 1.1: Checking properties in RoboChart

A classical property for a RoboChart model is an abstract behaviour defined as a CSP
process that communicates visible events of a RoboChart model. A property holds if it is refined
by the CSP process that captures the semantics for a given RoboChart component. A RoboChart
property focuses on the behaviour of a single component and abstracts the structure of the
component to be verified. In a similar way, activity diagrams describe the behaviour of a (sub)
system while abstracting its structure.

Activity diagrams have been used for a variety of purposes. Business and system analysts
use them to specify business processes, use cases and document the implementation of system
processes. Moreover, they can be used to model system behaviour given the expressivity of
their constructors that allows the modelling of condition, loop and concurrent behaviours. In
previous work [14], we had defined the CSP semantics for an activity diagram. This allows
activity diagrams to be used as a diagrammatic notation to express CSP processes. Nonetheless,
the CSP semantics defined in [14] cannot express RoboChart properties because it does use the
same encoding for the events that is used in the semantics for a RoboChart component.

This work defines a language based on the notation of activity diagrams of UML, which
is used to specify application-specific properties for RoboChart. The language abstracts the
internal structure of the components and aims at expressing the expected order for inputs, outputs
and operations calls of RoboChart components. The proposed notation uses and extends the
nodes of an activity diagram to make them compatible for expressing RoboChart events and
operations. In addition, the language introduces stereotypes that express two common patterns
of behaviour that ease the specification of properties. The language has well-defined semantics
in the notation of CSP that has the same encoding of the RoboChart semantics; this enables the
automatic verification of properties using FDR. A property holds if, and only if, the CSP process
that represents the property is refined by the CSP process that represents the target RoboChart

14

element, which can be a state machine, a controller or a module. Properties can be authored
using the Astah UML tool 2. Moreover, a plug-in for Astah has been developed to translate the
property diagram to CSP and call FDR to verify the property of the target RoboChart element.
The complete work has been submitted to a journal and is under revision.Additionally, if the
property does not hold, the plugin parses the counterexample generated by FDR and presents it
as a sequence diagram. In order to validate the approach, we present a case study that shows the
application of the approach to model and verify properties of two robotic systems designed with
RoboChart. Part of this work has already been published in [15].

Figure 1.2 shows how property definition and verification can be facilitated if the property
designer uses the proposed plugin. The plugin supports the definition of the property in a notation
similar to activity diagrams that is translated to CSP, then it calls FDR to verify whether the
property holds. If a counter example is found, the plugin parses the FDR counterexample and
displays the traces as a sequence diagram. The plugin completely hides the semantics of the CSP
language.

Figure 1.2: Checking properties in RoboChart - using the plugin

The remainder of this document is organised as follows. The next chapter presents
the background for this work. Chapter 3 presents syntax and semantics for the language for
specifying properties. Chapter 4 details the tool support developed to automatise the translation
of the property to CSP, the verification of the property and the counterexample visualisation.
Chapter 5 describes a case study related to the robotic domain. Chapter 6 discusses related
work. Finally, Chapter 7 concludes and presents future works.

2https://astah.net/products/astah-uml/

151515

2
Background

In this chapter, we present the basics of the RoboChart language, the UML diagrams
used in this work and the notation of CSP.

2.1 RoboChart

RoboChart models specify the behaviour of a software that controls and interacts with a
robotic platform (hardware). A module is the RoboChart component that specifies the flow of
events between software controllers and a robotic platform. Controller behaviour is specified by
state machines. Input and outputs events, as well as operation calls, are possible observations for
a module, controller and state machine. Naturally, properties for a RoboChart model consider
the expected order of such observations. In this chapter, we focus on the notation for a state
machine used by this work. For further details on the notation of RoboChart, please refer to [23].

The robot model is composed of a module that must contain exactly one robotic platform
and at least one controller. Figure 2.1 shows the CFootBot module that contains the FootBot

robotic platform and ref Movement, a reference to the Movement controller. This specification
is a simplification of the model that can be found in the RoboCalc website 1. This module
specified a simple mobile robot that changes directions when an obstacle is detected. In a
module, all variables and operations required by the controllers must be provided by the robotic
platform. The platform FootBot has a interface for movement (provided), represented by the letter
’P’ and another for obstacle (defined), represented by the letter ’i’. The interface MovementI

defines the operation move that receives two parameters: lv and av. They represent linear and
angular movements of the robot. The call of such operation makes the robot to move. The
interface ObstacleI specifies the event obstacle. Events represent atomic communications. In
our example, the event obstacle is an input event coming from the platform; it represents the
robot encountering a obstacle. Still in Figure 2.1, we can see a connection (arrow) connecting the
obstacle event leaving the platform (provided) and arriving at the obstacle event of the controller

1https://www.cs.york.ac.uk/circus/RoboCalc/other_examples/SimFW/index.
html

https://www.cs.york.ac.uk/circus/RoboCalc/other_examples/SimFW/index.html
https://www.cs.york.ac.uk/circus/RoboCalc/other_examples/SimFW/index.html

2.1. ROBOCHART 16

(required).

Figure 2.1: CFootBot module

In a controller it is necessary to have at least one state machine. In Figure 2.2 we can
see the model for the Movement controller that contains a reference to the SMovement state
machine. Such a controller has two interfaces: one for movement (required), represented by the
letter ’R’ and another for obstacle (defined), represented by the letter ’i’. In the same figure we
can observe the connection (arrow) that links the obstacle event of the controller to the event of
the state machine.

Figure 2.2: SimFW robot - controller

Figure 2.3 presents the specification for the state machine SMovement. Such a state
machine requires the interface MovimentI and uses the interface ObstacleI. Moreover, it defines
the constants lv and av.

Each state machine is composed of states, pseudostates and transitions. States can have
actions: entry, during and exit. In the SMovement state machine, the initial node leads to the
state Moving, which has an entry action that calls the operation move(lv,0) that makes the robot
to perform a linear movement (av equals zero). When an obstacle is detected, the event obstacle

triggers a transition that leads to the Turning state. The Turning state has an entry action that

2.2. UML DIAGRAMS 17

Figure 2.3: SimFW robot - state machine

executes an angular movement move(0,av), causing the robot to rotate, dodging the obstacle. In
sequence, a transition to the Moving state is triggered.

2.2 UML Diagrams

A UML activity diagram is a graph of activity nodes interconnected by activity edges [26].
An activity node can be either an action node, an object node or a control node. Activity edges
are directed connections between two activity nodes. They can be either a control flow used to
sequence the execution of activity nodes explicitly, or an object flow, which can communicate
data between two nodes. Action nodes execute the desired behaviour when ready, including
sending or receiving signals or invoking another activity. Object nodes explicitly hold objects
that arrive in their incoming edges and offers them to the outgoing edges. Control nodes organise
the order flows are traversed. They act as “traffic switches" across the activity edges. Nodes and
edges can be grouped in swimlanes (or partitions), used to organise parts of flows. They can be
vertical or horizontal, and their primary purpose is to delimit boundaries of responsibility for
each group of behaviour. Figure 2.4 shows all types of control nodes, some of the main types
of action nodes and object nodes grouped by swimlanes. The descriptive semantics for each
constructor can be seen in the UML specification [26].

Besides the semantics of each node, the execution semantics of an activity diagram is
described in terms of tokens flowing through the edges and nodes. Activity edges are directed
with tokens flowing from the source activity node to the target activity node. However, the token
must only flow if the target is ready to accept it. Some nodes may generate tokens. For instance,

2.2. UML DIAGRAMS 18

Figure 2.4: Activity diagram nodes.

an initial node creates tokens on its outgoing edges when the activity starts. Other nodes only
consume tokens, like flow final and activity final nodes. An action node can only be executed
once all incoming edges are offering tokens, and when it terminates, it must offer tokens in its
outgoing edges.

Finally, an activity diagram can only terminate in two scenarios: if no active tokens are
flowing through the activity after it has been started, or if an activity final node has consumed a
token. In the latter case, all current flows are halted.

Sequence diagrams are another UML model element widely used to describe dynamics
focusing on interactions. One of the reasons for the acceptability of such a notation is its
readability, which facilitates communication between stakeholders. They have been used to
represent use cases, test purposes, business scenarios, etc. Since it presents an easy-to-read
way to show traces (in terms of message events), we have chosen it as the representation for
counterexamples.

Sequence diagram focus on the message interchange between several lifelines, the
lifespans of objects depicted in the diagram. A message flows between two lifelines and is
composed of a sending event and a receiving event. In addition, it can be synchronous (filled
arrowhead) or asynchronous (open arrowhead). Figure 2.5 illustrates a simple interaction between
a User, its phone and the message server. It has three lifelines, User (depicted as an actor),
userPhone and MsgServer. User sends an asynchronous message submitText() to userPhone

and MsgServer also sends an asynchronous message to userPhone. According to the UML
semantics for sequence diagram, in this example, the sending events of these messages can
happen in any order, however, the lifeline of userPhone restricts that the submitText() receiving

2.3. CSP NOTATION 19

event happens before the reception the sendMsgId() event.

Figure 2.5: Example of a sequence diagram.

There are additional constructors that allow the specification of complex scenarios,
however, this subset is enough to contextualise our strategy. More details can be seen in [26].

2.3 CSP notation

The CSP process algebra is very expressive to specify systems composed of interacting
components. In CSP, a process is the basic unit for describing behaviour. It is defined in terms of
events and other processes. The function α(P) yields the alphabet of a process P, that is, the
events that the process P may communicate. The primitive process SKIP represents successful
termination. The process a→ P offers the event a to the environment and then behaves as the
process P. CSP channels abstract a set of events with a common prefix. The syntax c?x : A

represents the channel c inputs a value x, such that x ∈ A, which is the type for the channel c.
The value for x is chosen by the environment. The syntax c.e (c!e) represents an expression
e ∈ A is communicated through the channel c. The difference between . and ! happens when the
channel communicates more than one value at once. For instance, consider c is a channel that
communicates simultaneously four different values, and has type A.B.C.D. The communication
c?x.y!z.t is equivalent to c?x?y!z!t, because a dot following a ? (!) is taken to be part of a pattern
that is matched by the input. However, for this to be true, we need the variables z e t to be in
the context. The sequential composition P1; P2 behaves like the process P1 and, provided it
terminates successfully, P2 takes over. The CSP notation has no explicit operator for recursion,
but it allows one to use the name of the process in its definition. For instance, the process
P = a→ P communicates the event a and then behaves as P.

The external choice P1 2 P2 initially offers events of both processes P1 and P2. The

2.3. CSP NOTATION 20

communication of the first event resolves the choice in favour of the process that performs it.
The parallel composition P1 |[cs]|P2 synchronise P1 and P2 on the events in the set cs; events
not in cs occur independently. Processes composed in interleaving P1 ||| P2 progress in parallel
without synchronisation. The event hiding operator P \ cs internalises the events that belong
to the set cs, which become no longer visible to the environment. The interruption operator
(4) allows a process to be interrupted by another. The process P4 Q behaves as P until Q

communicates an event. When this happens, we say that P has been interrupted by Q.
The traces of a process P, say traces(P), is the set of possible sequences of events

performed by P. We can compare the traces of two processes using a refinement assertion
denoted by PvT Q. Such an assertion holds if, and only if, traces(Q)⊆ traces(P). The FDR tool
[8] verifies process refinement as well as classical properties like deadlock and nondeterminism.

212121

3
Diagrammatic Language for properties

The visual language to specify properties of RoboChart models allows the definition of
the expected order for inputs, outputs and operation calls of RoboChart components, which can
be robotic controllers, modules and state machines. Properties defined with this language are
used to define the possible behaviours a component can perform. A property is valid if the the
behaviour of the component is a subset of the behaviour of the property. Consider P Prop is the
CSP process that represents the semantics of a visual property and P CName is the CSP process
of a component named CName. The property Prop holds in the RoboChart component CName

if, and only if, the traces for a component is a subset of the traces of the property. Formally.

P PropvT P CName

The remaining of this chapter presents the syntax and the semantics of the proposed
language.

3.1 Language syntax

The language for properties is based on the notation of UML activity diagrams. Standard
activity diagram nodes (Figure 2.4) can be mixed with specialised nodes and stereotypes to
specify the expected flow of observations for a RoboChart component. Table 3.1 shows the
notation of the proposed language.

First row in Table 3.1 shows the diagram that represents a RoboChart property has a
unique swimlane with the same name of the RoboChart component, for illustrative purposes,
we use the nomenclature CName which means Component Name (state machine, controller or
module). Inside the swimlane are the nodes that specify the property. A call to a RoboChart
operation op with parameters p1,...,pn is represented as an action in the property language (Row
2). Furthermore, a RoboChart input event i that does not communicate values is represented in
the property language as an accept event action, as seen in Row 3. On the other hand, when it is
an output event o, then we use a send signal action (Row 4). If the input or output communicates
a value v, such a value is put between parenthesis — Rows 5 and 6. The property language

3.1. LANGUAGE SYNTAX 22

Table 3.1: Property notation

No Notation Description

1 Swimlane with the nodes of the property

2 Operation op with parameters p1,...,pn

3 Simple input i

4 Simple output o

5 Input i with value v

6 Output o with value v

7 Input i with value v within S

8 Output o with value v within S

9 Edge with <<UNTIL>> stereotype

10 Call behaviour with <<ANY>> stereotype

3.2. LANGUAGE SEMANTICS 23

allows the specification of the range of values for inputs and outputs using pins. Consider that S
is a set of values that is a subset of the values for the event (input i or output o) defined in the
RoboChart model. Rows 7 and 8 of Table 3.1 show how to specify a range of values for inputs
and outputs through the usage of pins.

The stereotype <<UNTIL>> labels edges that target a send signal, an accept event or an
operation — Row 9. This stereotype specifies that the diagram performs any possible sequence
of observations in the RoboChart component between the source node and the target node except
the target node event/operation. If the diagram executes the target node event/operation, the
diagram follows the outgoing edge of the target node. The stereotype <<ANY>> labels call
behaviour actions — Row 10. When the diagram executes a call behaviour with this stereotype,
any sequence of observation in the context of the component can be performed by the diagram.

There is an important difference in the meaning of a signal sending and receipt in the
property language and the original meaning in the activity diagram. The original meaning is that
a send signal action may transmit a signal that could be received by an accept event action. In
the proposed property language these nodes do not exchange signal/events. This is more explicit
in the next section that presents the semantics for the language.

Considering the combination of the standard nodes for activity diagram and the intro-
duced abstraction patterns, it is possible to define a range of properties using the proposed
notation. We illustrate the usage of the notation with examples.

Figure 3.1 illustrates a property, say Angular, for the SMovement state machine in
Figure 2.3. This property specifies that whenever the robot receives an obstacle event, it turns
to avoid a collision with a constant angular speed. We explain how this property is expressed
using the proposed notation. The diagram starts with a merge node with a control edge with the
stereotype <<UNTIL>>. This edge targets an accept event node that represents the reception of
the obstacle event. As explained, this stereotype specifies that any sequence of observations can
happen in the RoboChart model before the obstacle event. After the obstacle, the move operation
must be called with the first parameter equals 0 (linear speed) and the second parameter equals
the constant av (angular speed).

Chapter 5 presents a more comprehensive use of the notation for modelling properties of
two different systems designed with RoboChart.

3.2 Language semantics

This section presents the CSP semantics for the property language for RoboChart models.
Figure 3.2 shows the overall structure of the CSP process that specifies a property. In this

figure, boxes represent CSP processes, arrows events and vertical bars the parallel composition
of processes. Synchronisation alphabet appears inside brackets. This semantics is an adaptation
to represent RoboChart properties of the compositional semantics in [14] for activities. The
process PROP represents a property. It is the parallel composition between the activity process,

3.2. LANGUAGE SEMANTICS 24

Figure 3.1: Property for SimFW.

say ACTIVITY , and the process AUXILIARY . The semantics for the activity is the parallel
composition among the process that specify each of the activity nodes, say Nodes, with the
process that manages the number of active tokens in the activity, say TokenManager. The
semantics for AUXILIARY is the composition of auxiliary processes used in the specification
of the stereotypes <<UNTIL>> and <<ANY>> introduced in Table 3.1. The visible events
of the process PROP represent events and operations for a RoboChart model, other events are
internal to the specification and used to control the composition between the processes.

We formalise the CSP semantics for a property. Let αC the set of control events of the
process ACTIVITY . Such a process is interrupted by the process endDiagram→ SKIP. The event
endDiagram is communicated by the process ACTIVITY to indicate the conclusion of the activity.
The composition synchronises on control events that belong to the channels begin, end, chaos

and endDiagram. The first three channels are used to specify the behaviour of the stereotypes,
the last channel belongs to αC. The channels begin and end are in the synchronisation set if the
stereotype <<UNTIL>> is used in the definition of the property. The channel chaos is in the
synchronisation set if the stereotype <<ANY>> is used. This is the CSP expression for the
process PROP.

PROP = (ACTIVITY

[| | begin,end,chaos,endDiagram | |]
(||| P : AUXILIARY • P4 endDiagram→ SKIP)

) \ αC∪{| begin,end,chaos |}

The process ACTIVITY represents the behaviour of an activity adapted from [14] to

3.2. LANGUAGE SEMANTICS 25

Figure 3.2: Property semantics in CSP.

represent RoboChart observations as inputs, outputs and operation calls.

ACTIVITY = (startActivity→ SKIP; Nodes; endActivity→ SKIP)

|[| update,clear,endDiagram |]|
TokenManager

The behaviour of ACTIVITY is the parallel composition of the nodes and the TokenManager

process. An activity starts when the startActivity event is communicated, then it behaves as the
process Nodes. The startActivity event may receive input data required by the activity param-
eter nodes. As soon as an activity terminates, it communicates the endActivity event with the
data available in its output parameter nodes. The underlying semantics of activity diagrams is
described by the flow of tokens among nodes. An activity terminates once there is no active
token, or a token reaches an activity final node. In our semantics, the TokenManager process
records the number of active tokens of an activity and controls the termination of the diagram.
This process is shown next.

TokenManager(n, init) = update?x→ TokenManager(n+ x, true)

2 clear→ endDiagram→ SKIP

2 (n == 0 ∧ init) & endDiagram→ SKIP

3.2. LANGUAGE SEMANTICS 26

The initial values of the parameters n and init are 0 (zero) and false, respectively. The
TokenManager process can receive communications on the channel update with an integer value
x to update the current number of tokens to n + x (x can be either positive or negative). It is
positive when the node creates new flows and negative if the node join flows. After the first
update event, the token manager becomes active, so the value of init is set to true. An activity
final node terminates the activity once a token has reached it. In our semantics it is the only
node that communicates the event clear, which synchronizes with the TokenManager process.
Once it has been synchronized, the flows of the diagram terminate (event endDiagram). Another
possibility of termination is when the number of tokens reaches 0 (zero) and the diagram has
already started (init is true). In this situation, the flow of the diagram terminates as well. After
the event endDiagram is communicated, all CSP processes of the nodes are interrupted and the
endActivity event is performed.

According to the UML semantics, an activity is described in terms of nodes and edges
between the nodes. In our CSP semantics, these elements are represented by processes and
events, respectively. The process Nodes is the parallel composition of the processes that represent
each node. Node processes synchronise on the events that represent edges. The outgoing edge
of a node is the incoming edge of another node. Control edges are represented by events in the
form ce.id and object edges by events in the form oe.id, such that id is the edge identifier. For
instance, if there is a control edge ce.1 between two nodes N1 and N2, the event ce.1 is part of
the alphabet of the processes of both nodes. Events in the form ce.id and oe.id belong to αC, and
are not visible because events in αC are hidden in the process PROP.

In what follows, we present the semantics for the nodes whose semantics is particular to
the properties language. Nodes that are not presented here keep the semantics presented in [14].

We start showing the semantics for nodes that represent an operation call, a input and an
output (Rows 2—6 in Table 3.1). Tables 3.2, 3.3 and 3.4 represent the semantics for such nodes.
Let {m..n} be the range of indices for the incoming edges of the node, and {u..t} the range of
indices for the outgoing edges. The processes P op, P i and P o represent the formal semantics
for such nodes. The semantics of these nodes is to wait for the communication of the incoming
control edges, communicate an event, wait for the communication of the outgoing control edges
and to recurse. The wait for the incoming (outgoing) edges is specified as the interleaving of
the communication of the events for the edges followed by a successful termination. In CSP,
the parallel composition only terminates if all the processes in the composition do terminate.
The event communicated between incoming and outgoing edges has a particular format for each
kind of node. In Table 3.2, the event opCall.p1...pn represents an operation op with parameters
p1,...,pn. In Table 3.3, the CSP event i.in.v represents a RoboChart input event named i with
value v. Table 3.4 presents the opposite scenario when the model communicates an output
event. In this case, the CSP event o.out.v relates to a RoboChart output event o with value
v. The CSP specification for a RoboChart model is organised in CSP modules. CSP events
prefixed with CName :: are those defined in a CSP module with the name CName ::. For instance,

3.2. LANGUAGE SEMANTICS 27

CName :: opCall.p1...pn denotes opCall.p1...pn is defined in the module CName.

Table 3.2: Operation call - CSP Semantics

P op = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: opCall.p1...pn→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P op

Table 3.3: Input with value - CSP Semantics

P i = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: i.in.v→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P i

Table 3.4: Output with value - CSP Semantics

P o = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: o.out.v→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P o

The semantics for a simple input, see Row 3 in Table 3.1, is presented in Table 3.5. Such
a semantics is very similar to that for an input with value. The difference is the event that follows
after the component identification (CName ::). Consider a simple input (output) named i, the
CSP event that represents a simple input is i.in. Similarly, a simple output (Row 4 in Table 3.1)
is depicted in Table 3.6. The simple output event named (o) is translated to a CSP event o.out.

The semantics for nodes that specify an input and an output with a range of values
(Table 3.1 lines 7 and 8) are specified by the process P ir and P or presented in Table 3.7
and Table 3.8, respectively. The semantics for P ir is to wait for the communication of the

3.2. LANGUAGE SEMANTICS 28

Table 3.5: Simple input - CSP Semantics

P si = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: i.in→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P si

Table 3.6: Simple output - CSP Semantics

P so = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: o.out→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P so

incoming object edges, communicate the event CName :: i.in?v, wait for the communication of
the outgoing object edges and to recurse. The semantics for P or has similar steps but a different
event CName :: o.out?v.

Table 3.7: Input with range - CSP Semantics

P ir = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: i.in?v : S→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P ir

Next, we discuss the semantics for nodes reached by an edge with the stereotype
<<UNTIL>> and for a call behaviour node with the stereotype <<ANY>>. These two
kinds of nodes synchronise with the process AUXILIARY (recall the definition of PROP) in the
events of the channels begin, end and chaos.

Nodes reached by an edge with the stereotype <<UNTIL>> communicate events
begin.id and end.id, and call behaviour nodes with the stereotype <<ANY>> communicate

3.2. LANGUAGE SEMANTICS 29

Table 3.8: Output with range - CSP Semantics

P or = (ce.m→ SKIP ||| ... ||| ce.n→ SKIP);
CName :: o.out?v : S→ SKIP;
(ce.u→ SKIP ||| ... ||| ce.t→ SKIP);
P or

chaos.id events. The value for id is unique for each usage of <<UNTIL>> and <<ANY>>.
Let A PROCESSES be the set of auxiliary processes. Moreover, let the expression |||P : S • P

be equivalent to the process P1 ||| . . . ||| Pn, for S = {P1, . . . ,Pn}. The semantics for AUXILIARY

is the interleaving of the processes in A PROCESSES interrupted by the event endDiagram.

AUXILIARY = (|||A : A PROCESSES • A)4 endDiagram→ SKIP

The definition for an auxiliary process depends on the stereotype. We show the semantics for
auxiliary processes in what follows.

The process CallBehaviour in Table 3.9 formalises the semantics for a call behaviour
node with the <<ANY>> stereotype (Row 10 in Table 3.1). Such a process waits for the com-
munication of the incoming edges, then communicates chaos.id and behave as CallBehaviour.

Consider 2ev : S • ev→ P is equivalent to the choice ev1→ P 2 . . . 2 evk → P, for
S = {ev1, . . . ,evk}. The process RUN(S) =2ev : S • ev→ RUN(S) is the CSP process that
produces the traces in S∗. This process is used in the definition of the auxiliary process. Moreover,
let P CName be the CSP process that formalises the untimed semantics of RoboChart component
CName. The process AUX ANY = chaos.id→ RUN(α(P CName)) belongs to A PROCESSES

and represents the auxiliary process for a node with the <<ANY>> stereotype. Remember in
the expression for the process PROP, AUX ANY synchronises with the process CallBehaviour

in the chaos.id event and behaves as RUN(α(P CName)). This last process contains all traces
that can be produced by P CName. This semantics means that any sequence of events after the
call behaviour stereotyped by <<ANY>> are valid behaviour.

The semantics for a node that is reached by an edge with the <<UNTIL>> stereotype
(Row 9 in Table 3.1) is formalised by the process Until1 presented in Table 3.10. Only three kinds
of nodes can be reached by an edge with <<UNTIL>>: send signal (output), an accept event
(input) or an action (operation). The semantics for such a node is to wait for the communication

1The semantics for the <<UNTIL>> stereotype is not equivalent to the until operator used in temporal logics.
The expressiveness of CSP refinement and its relation to temporal logics is reported in [30, 16].

3.2. LANGUAGE SEMANTICS 30

Table 3.9: Call behaviour with the <<ANY>> stereotype — CSP Semantics

CallBehaviour = (ce.m→ SKIP ||| . . . ||| ce.n→ SKIP);
chaos.id→ SKIP;
CallBehaviour

of the event for the incoming edge (whose stereotype is <<UNTIL>>), to communicate begin.id

and end.id events, wait for the communication of the outgoing edges, and to behave as Until.

Table 3.10: Node reached by an edge with <<UNTIL>> — CSP Semantics

Until = (ce.m→ SKIP);
begin.id→ end.id→ SKIP;
(ce.u→ SKIP ||| . . . ||| ce.t→ SKIP); Until

The process WAIT is used in the definition of the auxiliary process for Until. Consider
the CSP process Recurse(S,P) =2evt : S • evt→ P that offers a choice of all events in the set
S; after the process communicates the event in the choice it behaves as P. The process WAIT is
parametrised by the event ev. The behaviour of this process is to communicate the events of the
alphabet of P CName except ev, and to behave as WAIT(ev). If the event ev is communicated,
the process terminates.

WAIT(ev) = Recurse(α(P CName)\{ev}),WAIT(ev))

2

ev→ SKIP

The process AUX UNTIL belongs to A PROCESSES and formalises the auxiliary process
for Until. The events being.id and end.id of this process synchronise with the events in the Until

process depicted in Table 3.10. In between these events, it behaves as WAIT(CName :: event).
The content for event follows the semantics for an output, an input or an operation node. The
behaviour of the parallel composition of AUX UNTIL with Until is to accept any event in
α(P CName) except CName :: event. After CName :: event is communicated, the composition

3.2. LANGUAGE SEMANTICS 31

follows one of the outgoing edges.

AUX UNTIL = begin.id→WAIT(CName :: event);
end.id→ AUX UNTIL

The semantics for a node of any kind has an implicit interruption with the endDiagram.
The effect of this interruption is that the behaviour of all nodes are interrupted by such an event,
whenever the TokenManager process communicates this event. This is kept implicit to simplify
the presentation of the semantics.

Consider the function compose that follows. This function is used to specify the composi-
tion of a sequence of nodes. The first function parameter is a sequence of process identifiers, and
the second is the set of events that have already been used in the synchronisation of the parallel
composition. Let αid be the alphabet of control events of a node identified by id. Such a function
uses generalised parallel composition to compose the nodes of a property. Synchronisation set
of the parallel composition contains the control alphabet of the node to be composed, and the
endDiagram event that allows the nodes to terminate together. The synchronisation set excludes
the events already used in the composition of previous nodes of the network of processes formed
by the already composed nodes.

compose(〈id〉,) = Nodeid

compose(〈id〉a tail,past) = Nodeid

|[(αid \past)∪{endDiagram})]|
compose(tail,αid ∪past)

The formal definition for the process Nodes is

Nodes = compose(seq(Nodes IDs),{})

In such a definition Nodes IDs represents the set of identifiers for processes that formalise nodes
and seq is a function that converts a set into a sequence.

The order of nodes returned by the function seq is arbitrary; however, the order does not
change the semantics of the composition. This holds since the generalised parallel composition
operator is associative with different synchronisation alphabets if the synchronisation set between
the processes contain the intersection of the alphabets of the processes (refer to [29] for the laws
of parallel composition operators).

To illustrate our semantics, we show the process P Angular that captures the semantics
of the property Angular in Figure 3.1. Appendix A shows the complete CSP semantics for the
property Angular. For conciseness, instead of presenting the syntax of the process obtained by the
compositional semantics, we present an equivalent process that has a shorter representation. Let
P SMovement be the CSP process that formalises the behaviour of the SMovement state machine.

3.2. LANGUAGE SEMANTICS 32

The behaviour of P Angular is to recurse if an event different from obstacle is communicated.
When an obstacle event happens, then it communicates SMovement :: moveCall.0.av. In the
sequence it behaves as P Angular.

P Angular =

Recurse(α(P SMovement)−{SMovement :: obstacle.in}, P Angular)

2

SMovement :: obstacle.in→ SMovement :: moveCall.0.av→ P Angular

The property Angular in SMovement holds if, and only if, the following refinement holds.

P Angular vT P SMovement

This refinement holds since the property holds in the SMovement state machine model.
To illustrate a model where the property does not hold, suppose the state Turning of the

machine SMovement (Figure 3.1) performs a call to the operation move(av,0) — this change
simulates a specification error in the RoboChart model. Checking such a refinement using the
FDR tool, we have that the refinement does not hold and FDR yields the counterexample trace.

〈SMovement :: move(lv,0),SMovement :: obstacle.in,SMovement :: move(av,0)〉

This counterexample reveals that after communicating an obstacle input event, the
SMovement state machine does perform a call to the move operation with an unexpected value
for the parameters, as we switched the order of the parameters of this call in the SMovement

state machine model.
Also, we used FDR to verify whether the semantics of properties using the proposed

language equals the semantics of the original property specified as CSP processes. For instance,
we were able to verify the corresponding CSP specification generated from the visual specification
of the Angular property presented in Figure 3.1 is equivalent to the simplified property written in
CSP.

333333

4
Tool Support

This chapter focuses on describing how the tool support is designed, its dependencies,
and features.

4.1 Architecture

Our tool has been implemented as a plug-in for the Astah UML modelling environment,
which can be extended by the integration of plug-ins to add new features. It has been built
based on another plug-in that verifies properties on activity diagrams [14]. Figure 4.1 shows
the architecture of our plug-in. Astah runs on top of the Java Virtual Machine (JVM) to
enable the tool to be platform independent. We use the Astah Java Application Programming
Interface (API) to programmatically read activity diagrams as properties, translate them to CSP
and verify properties on RoboChart models using the integration built with FDR. Also, we
provide a traceability mechanism when a property does not hold, generating a counterexample
as a sequence diagram.

Figure 4.1: Plug-in Architecture.

4.1. ARCHITECTURE 34

The developed plug-in is divided into five modules, which are:User Interface (UI),
Controller, Parser, FDR Bridge and Traceability. The UI module is responsible for making the
connection between the user and the controller through the plug-in menu. For instance, to check
the property of a given RoboChart model, the user must provide the path to the RoboChart
file. This can be set by accessing the plug-in UI menu available at Tools -> Properties

Plug-in Configuration -> Robochart Location, as can be seen in Figure 4.2.

Figure 4.2: Menu for setting the path to the RoboChart file.

The Controller module is responsible for receiving information (commands and diagrams)
from the UI module, managing the entire plug-in operation, and returning a response (messages
and/or diagrams) to the UI module. The Parser module is responsible for receiving a diagram
from the Controller module, translating it according to the semantics described in Section 3.2,
and returning a CSP file to the Controller module.

The FDR Bridge module is responsible for communicating with FDR. It invokes the
assertions specified in the CSP file generated by the parser. When the assertion does not hold,
it is also responsible for collecting the counterexample returned by FDR (list of events) and
returning it to the Controller. The Traceability module is responsible for receiving an event list
(trace) of the Controller module and providing a diagrammatic view of it in terms of a sequence
diagram.

4.2. PARSER MODULE 35

4.2 Parser module

The parser module implements the transformation from the visual property to the CSP
semantics for the property showed in Figure 1.2. The process of translating the diagram is done
automatically by the plug-in. The translation rules are encoded directly in the Java program we
have built. The coding task followed a Test-Driven Development approach [3] where first we
define the test cases describing how the translation should be, and, next, we implement the parser
code.

The architecture of the parser follows the same structure as defined in [14], however,
we had to extend the translation functions to cover the new elements proposed for defining
RoboChart properties: proposed stereotypes, swimlanes and the RoboChart data. Regarding
the latter, in order to analyse a RoboChart model, we link the CSP specification we generate
for the property to the the RoboChart file provided by the user in the corresponding menu. In
Figure 1.2, the plus symbol illustrates the link of the property specification in CSP with the
CSP semantics for the RoboChart model. The union of the two specification is the input for the
automatic verification performed by FDR.

4.3 FDR Bridge module

FDR is a powerful model checker for CSP specifications. It generates a Labelled
Transition System (LTS) [29] from the CSP specification and traverses all possible states to
establish if a refinement expression holds.

This module is responsible for the communication with FDR. It invokes the assertions
specified in the CSP file generated by the parser. When the assertion does not hold, it is also
responsible for collecting the counterexample returned by FDR (list of events) and returning
it to the Controller. In order to make this integration possible, the user has to inform the
path to the FDR installation folder. This can be performed by accessing the plug-in UI menu
Tools -> Properties Plugin Configuration -> FDR Location, as can be
seen in Figure 4.2.

After informing the path, whenever a RoboChart property is verified, the plug-in (FDR
Bridge module) loads the FDR library given the provided path to the FDR installation folder.
This is possible because we use the Java Reflection technique, which allows us to load the FDR
API dynamically. Therefore, we do not need to include FDR as part of the plug-in.

4.4 Robochart property analysis

After modelling the activity diagram as a property and providing the path to the RoboChart
file, the user can start the verification process in the menu we have created in Astah as can be
seen in Figure 4.3. This action triggers the following tasks: the tool generates the corresponding

4.5. TRACEABILITY 36

CSP specification (Parser module), loads it in FDR and invokes the assertion that checks if the
property is valid in the RoboChart model (FDR Bridge module). If the property does not hold,
FDR returns a counterexample trace displaying the sequence of events that led to the violation,
which is, then, translated to a sequence diagram. This way the user does not need to read the
counterexample trace in the CSP notation.

Figure 4.3: Checking a RoboChart property in Astah.

4.5 Traceability

The trace returned by FDR when the modelled property does not hold, as previously
mentioned, is an ordered list of events that shows us the path to point that violates the property.
This ordered list is crucial to identify where the problem occurred and to create a diagrammatic
counterexample that shows the issue in a view friendly to the user. For example, consider the
trace

〈SMovement :: move(lv,0),SMovement :: obstacle.in,SMovement :: move(av,0)〉

, already introduced in Section 3.2, that is yielded by FDR as the counterexample for the Angular

property. Figure 4.4 shows the traceability in terms of a sequence diagram that illustrates the
events in the counterexample. In this figure, the constants lv and av are replaced by the values 1
and 2, respectively. Such values are the concrete values for the constants, which are defined in

4.5. TRACEABILITY 37

the SimFW model before the verification performed by FDR. The actor Environment represents
the elements that interact with the SMovement state machine. The move operation is provided
by an element outside of the state machine, then, the direction of the messages related to this
call is from the SMovement to the Environment. On the other hand, obstacle is an input event
for this state machine, so it represented as a message from the Environment to the SMovement

lifeline. Finally, we highlight the last message with a different colour to emphasise that this event
violates the property.

Figure 4.4: Counterexample as displayed in Astah.

383838

5
Case Study

To validate the applicability of the approach, we use the proposed notation and tool
support to model and verify non-trivial properties of two different robotic systems: Solar Panel
Vacuum Cleaner and Chemical Detector. Such systems are designed using RoboChart and their
domain-specific properties are expressed in CSP. The RoboChart design and the properties for
the two systems can be found at RoboStar website [25]. This chapter shows how CSP properties
for each of the above mentioned systems are expressed using the proposed diagrammatic notation
proposed and verified using our Astah plugin.

5.1 Solar Panel Vacuum Cleaner

Solar Panel Vacuum Cleaner (SPVC) consists on a self driving robot that follows a
predetermined route. The system is reported in [6]. The cleaning robot has two wheels and
moves through the panels with a rolling brush to remove the panel dirt. While moving, the robot
checks its battery status. If the battery level is below a predefined value, it returns to the docking
station that is connected to one of the panels. Once the battery is full, the robot returns to the
point where it paused for charging and continues the cleaning. The robot movement follows a
predefined path that covers the entire surface of the solar panel. Figure 5.1 illustrates the robot
path in the solar panel. The robot’s initial position is the corner on the bottom left-hand side
(near the docking station). The robot moves forward pointing to the top of the panel and uses a
ultrasonic sensor to check if the edge has been reached. When the edge is reached, the robot
rotates 90° to the right, walks forward a small preset distance (to avoid overlap with the already
cleaned surface), turns 90° to the right and moves forward pointing to the bottom edge. When
reaching the bottom edge, the robot turns 90° to the left. At this point, it repeats the movement
pattern started at the initial position until it finishes the cleaning. Whenever the robot needs
to return to the docking station for recharging, it rotates 180° and follows a straight line until
reaching the station.

The RoboChart model for the SPVC is available at the website [25]. Such a model has a
single controller with twelve instances of state machines that are used to specify the controller

5.1. SOLAR PANEL VACUUM CLEANER 39

Figure 5.1: Robot movement

behaviour. The properties we model are focused on the behaviour of the PathPlanningSM state
machine (reproduced in Figure 5.2), which controls the robot movement. Such state machine
calls the operations move forward, stop, and turn. The last operation receives the direction
as a parameter. Moreover, the machine receives environment information through the events
ultrasonic, displacement and battery level; such events input integer values. There are also the
charging and clean events that output a boolean value. The value indicates whether the charging
(the cleaning) must be active or not.

In the sequence, we detail the properties for PathPlanningSM verified using our approach.
The ReturnToCharge property specifies the robot’s behaviour to stop cleaning and

returning to the dock station if the battery level is low; the robot continues the cleaning otherwise.
Figure 5.3 represents the diagrammatic specification for such a property, say ReturnToCharge.
The initial behaviour of the property is to wait for a battery level event and to follow to a decision
node that uses the current value for the battery, say b. If the value b associated with the battery
level is less or equal to zero, the robot will turn left two times, move forward and disable the
clean mode (set as false). At this point, the property behaviour is a loop that repeats while the
value u from the input ultrasonic is less than one. The loop exits if the value is greater than or
equal to one. The behaviour after the loop is to get the left direction, move forward, charge the
battery and repeat the behaviour after the initial node. If the battery level is greater than zero, the
robot turns left and behaves as the property NoFall.

The NoFall property exhibited in Figure 5.4, specifies the robot behaviour to move away
from the panel edge to avoid falling off the panel surface. The intuition for this property is that it

5.1. SOLAR PANEL VACUUM CLEANER 40

Figure 5.2: State machine PathPlanningSM — RoboChart Model for SPVC

contains all the possible directions a robot can take without falling off from the panel. If the CSP
process that represents the PathPlanningSM state machine refines this property, than this state
machine does not cause the robot to fall. The initial behaviour of the property is to wait for the
value for the ultrasonic sensor. If the value read by the sensor is below one, that represents a safe
distance to the panel cliff, the property returns to the initial merge node to wait for a reading of
the sensor that is closer to the cliff. If the distance is greater or equal to one, the behaviour is a
combination of several directions that do not make the robot to fall. After any of the directions,
the property returns to the initial merge node.

The MovementShape property shown in Figure 5.5 specifies the robot’s movement
patterns that are illustrated in Figure 5.1. These notes on the right-hand side document the
meaning of a sequence of events. Each group of events presented (ResumeCycle, Cycle, Continue

and GoBack), describes cycles that are essential to the movement of the robot. For instance, it
may be used to save the robot’s position after needing to stop to charge the battery. At the top of
the figure, after the initial state and the merge node there is a sequence of two RoboChart events
(turn(Direction right) and move forward) named ResumeCycling. This sequence represents the
resume cycling sequence of the SPVC robot. Following this sequence of events, we have the
Cycle sequence and the Continue sequence. The repetition of these two sequences illustrates the
robot’s movement throughout the panel. After the Continue sequence, the robot may proceed
to the GoBack sequence instead of recursing to the Cycle sequence. The GoBack sequence
describes the movements to return to the dock station. Following this last sequence, the robot
restarts the movement behaviour by performing the ResumeCycling sequence.

5.2. CHEMICAL DETECTOR 41

Figure 5.3: ReturnToCharge Property

5.2 Chemical Detector

We also modelled properties for the Chemical Detector robotic system designed in
RoboChart by A. Miyazawa and A. L. C. Cavalcanti [21]. In such a system, the robot performs a
random walk until it finds a potentially dangerous chemical product. The robot is equipped with
a portable chemical monitor that creates chemical signatures and identifies dangerous substances.
The chemical monitor is based on the work of James A. Hilder et al [10] that describes the
application of a density receiver algorithm (an artificial immune system) used to detect chemicals.
Upon finding a suspect substance, the robot uses its sensors to analyse the existence of dangerous
gases and turn a light whose color (green, amber or red) indicates how dangerous is the substance.
If the red colour lights on, the robot drops a flag to mark the place of the suspect substance.

The RoboChart design for the Chemical Detector is introduced in Figure 5.6. The
RoboChart module (ChemicalDetectorSoftware) has two controllers connected to the platform
(SensorVehicle). The MainComputer controller specifies the robot movement, while the Micro-

controller controller specifies the actions performed after the detection of a substance: dropping
a flag, sounding a siren and turning on a light.

The Spec1 property (see Figure 5.7) specifies the gas detection and commands should not
interfere with each other. This behaviour expressed in the proposed language as the fork between

5.2. CHEMICAL DETECTOR 42

Figure 5.4: NoFall Property

Figure 5.5: MovementShape Property

accepting commands (the diagram Commands) and detecting a gas (the diagram GasLight).
The Commands diagram, depicted in Figure 5.8, specifies that after a command is

received, the robot has the choice to turn to any direction (turn), to increase the speed (incrCall)
or slow down the speed (decrCall). The input pin for turning defines the angle the robot spins, it
is a value that ranges between {-180..180} degrees.

The Gaslight diagram, presented in Figure 5.9, models that initially it behaves as the call
behaviour to the Init diagram (Figure 5.10). This last diagram specifies the robot is prepared to
detect a gas and flash the light green, in any order. After concluding Init, the Gaslight diagram
specifies that, whenever a gas is detected, a light should flash. When the light flashes red, a siren
must sound and a flag must be dropped. At most one gas detection can occur before the light
must flash. This behaviour is recursive.

5.3. VERIFICATION OF PROPERTIES 43

Figure 5.6: Chemical Detector - Robochart model

5.3 Verification of properties

Before verifying whether the modelled properties hold in their respective RoboChart
designs, we checked the equivalence between the properties documented in the website and the
properties crafted using the diagrammatic notation. We used the plugin to automatically generate
a CSP process that express the diagrammatic property, and run FDR to check this process has
the same traces of the process that express properties in the website [25].

Subsequently, we used the plugin to verify whether the properties described in this
section hold automatically. The result of the verification showed that all properties hold, except
ReturnToCharge. Figure 5.11 shows the counterexample generated by the plugin showing the
behaviour of the PathPlanningSM state machine that is not expected by the property Return-

ToCharge. Analysing the trace displayed in the sequence diagram, we noticed that after the
ultrasonic(0) event, the robot performed the turn(Direction left) event. However, if we look at the
property, these events should only occur when the value received by ultrasonic is greater than or
equal to one. After analysing the RoboChart model, we detected that the PathPlanningSM state
machine (Figure 5.2) uses a constant named cliff, which corresponds to the threshold value to
detect the borders of the panel. This constant had been wrongly set to zero. Once the correct
value has been properly set to one, the property holds.

5.3. VERIFICATION OF PROPERTIES 44

Figure 5.7: Spec1 Property

Figure 5.8: Commands Property

Figure 5.9: GasLight Property

5.3. VERIFICATION OF PROPERTIES 45

Figure 5.10: Init Property

Figure 5.11: Counterexample ReturnToCharge property

464646

6
Related Work

This work focuses on the verification of properties for RoboChart that are expressed in
the form of process refinements. This is the first diagrammatic language for the specification of
properties for RoboChart models.

Miyazawa et al. [22] propose a tool that checks both classical and domain-specific
properties for RoboChart models that use time constraints. The proposed tool deals with
properties with time constraints that are specified as CSP process refinement expressions.

The authors in [6] use RoboChart to model the behaviour of a robotic system and CSP
processes to express application-specific properties. Informal requirements are formalised as CSP
process refinements expressions that are verified using FDR. Processes that abstract behavioural
patterns have been proposed to help the specification of properties. One of these patterns have
directly influenced the <<UNTIL>> stereotype proposed by our work. We specified some
properties defined in this work using our property language. In addition, using FDR, we were
able to verify the equivalence between the CSP specifications generated using our property
language and the ones written directly in CSP by this work. This provided evidences that our
semantics supports the specification of the RoboChart properties.

The work [17] surveys notations and verification techniques based on formal methods
in the context of autonomous robotic systems. Most of the works propose verification methods
that input the specification as a logic formula (for instance, temporal logic [5]). As the semantic
domain of RoboChart is CSP, we do not use temporal logic to specify properties but behaviours
in terms of processes that the model must refine.

The authors in [19, 18] propose a new set of patterns focusing on robotic missions
requirements. While in our work we used UML to abstract the CSP syntax, the authors used
a structured English to describe the requirements. They implemented PsALM [18], a tool that
supports the authoring of mission requirement through a structural English grammar using basic
block patterns and operators (temporal logic syntax) in a compositional way. Moreover, the tool
automatically translates the mission requirements into temporal logic properties in the format for
the NuSMV model checker [4] and simulators [12].

The authors in [20] present a framework, called ProMoBox, for designing domain-

47

specific modelling languages (DSMLs) that are used to specify models and their graphical Linear
Temporal Logics (LTL) [28] properties. The languages are used to hide the underlying formal
notation whose details are abstracted by the framework. In addition, the provided tooling support
allows the verification of properties using the generated property language. The domain-specific
model is translated to a Promela specification while the property is translated to an LTL formula.
Both serve as input for the Spin model checker [11]. Like in our approach, the results of the
verification are also lifted to the language of the DSML. Consequently, users do not need to
manipulate formal notation or tools in any part of the verification process. Such framework is
implemented using the AToMPM [31] modelling tool.

The authors in [13] solve the consistency checking problems of concurrent system
designs modelled with Petri nets [1] for scenario-based specifications specified with Message
Sequence Charts (MSC) [9]. Algorithms are used to check properties as if a given scenario
specified using MSC must happen or is forbidden in the possible runs of a Petri net. In this work,
the authors argue that using MSC is much more acceptable to the industry than using temporal
logic.

Table 6.1 makes a comparative summary between our work and some others cited so far.
Table columns present features considered in the related works. The column Model Notation

shows the notation used to specify the system. The column Property Notation depicts the notation
used for describing the properties to be verified, and column Traceability indicates whether the
work traces the counterexample to the notation used for modelling. Looking Table 6.1, we see
that only our approach and the one in [20] use non formal notations for the specification of
the model, the property and to represent the counterexample traces. Nonetheless, our approach
contrasts with the existent approaches for RoboChart ([6, 22]) that use CSP to specify properties
and to represent the counterexamples.

Table 6.1: Related Work

Work Model Notation Property Notation Traceability
[6] RoboChart CSP X

[22] RoboChart CSP X
[18, 19] FSM Structured English X

[20] DSML Graphical DSML X
[13] Petri Nets MSC X

Our work RoboChart Activity diagram X

484848

7
Conclusion

We have introduced a diagrammatic language based on activity diagrams for reasoning on
application-specific properties of RoboChart models. Several diagram elements like swimlanes,
actions, pins have been adapted to specify RoboChart observations as events and calls to
operations. Furthermore, we have extended activity diagrams with the <<UNTIL>> and
<<ANY>> stereotypes to increase the expressiveness of the notation. The presented language
has compositional semantics in terms of CSP processes, which uses the same encoding for CSP
events used in the underlying semantics of RoboChart models. This allows us to verify the
specified properties against RoboChart models using FDR. We have implemented a plug-in for
the Astah UML tool to specify these properties using extended activity diagrams and verify them
against the specifications of RoboChart models in an automated manner. Finally, we applied the
approach to model and verify properties of two different robotic systems.

Another contribution of our work is to provide traceability of the counterexample yielded
by FDR to the diagrammatic level. We have implemented in the plugin the translation of the
counterexample as a sequence diagram. In this approach, instead of reading a sequence of
CSP events, the user analyses the sequence of events and operations exchanged between the
RoboChart component and its environment.

The mechanisation of the approach is relevant because, currently, the users of RoboTool
must specify application-specific properties directly in CSP and understand the counterexample
of FDR if the property does not hold. The current work enables RoboChart designers to specify
both the system and the properties at the same level of abstraction, given that models and
properties use diagrammatic notations. We hope that hiding the formal notation of CSP can
facilitate and increase the adoption of RoboChart by the robotics community.

The proposed notation is based on activity diagrams that are very popular and have a
repertoire of constructs that allow the specification of a wide range of behaviours. Nonetheless,
it is not expressive as the CSP notation that has a richer language. Comparing the expressiveness
of the proposed language with the expressiveness of CSP is left as future work.

Application-specific properties over RoboChart models are formulated as process refine-
ment assertions. Different CSP models can be used to verify safety (traces model) and liveness

49

properties (failures-divergence and refusal traces). The properties specified by the proposed
language can be verified using any of the existing CSP models; however, this work considered
only safety properties. A future plan is to consider other kinds of properties.

Another point of improvement is to allow the specification of visual properties in the
RoboTool platform instead of using a different tool to model and verify the properties.

Although the CSP specifications generated from our diagrammatic properties are usually
larger than those specified directly in CSP, we verified that they have equivalent semantics
whenever the corresponding property is available in CSP. Using FDR compression functions,
the complexity of CSP specifications is significantly reduced, and this allowed us to perform
the analysis at similar times compared to properties specified in CSP. Nevertheless, we plan to
perform a more concrete study on scalability in the future.

Our tool supports a considerable number of activity diagram constructors, which allows
the designing of potentially elaborated properties. However, we plan to increase this number to
augment expressiveness. For instance, we do not cover timing aspects of the properties in the
current version of our semantics. At last, we plan to develop more case studies to explore the
proposed language and the reasoning strategy.

505050

A
APPENDIX

A.1 CSP specification for the Angular property

This appendix presents the contents of the CSP specification generated by our plugin for
the Angular property presented in Chapter 3. For better understanding and organisation, we split
the specification in four snippets that are presented by Figures A.1, A.2, A.3 and A.4.

Figure A.1 introduces the constants, channels, datatypes for the CSP specification of the
property. Moreover, this snippet includes the CSP specification generated by RoboTool for the
RoboChart model for SimFW (Line 2). In Line 3, we can see the diagram identifier declaration
and the number of existing instances. In Line 4, we have the datatype that specifies the tokens
which identify each node of the diagram. In Line 5, we have the alphabet of the events from
RoboChart that occur in the modelled property. In Lines 6, 7 and 8, we have a counter for control
edges, another counter for active tokens (only when there is concurrency this number is greater
than one) and another counter for the number of activity final nodes. In Line 9, we determine a
limit of the arithmetic operations performed on the counting of flows to allow model checking.
This limit is calculated based on the possible concurrent flows. From Lines 10 to 17, we have the
channels: to start and end the activity, the control edges, to clean tokens, to control active tokens
within the diagram and synchronise the termination of activity nodes. In Line 16, we use the dc

channel to capture/generate non-determinism on the output edges of decision nodes. In Line 17
we have two auxiliary events to control the UNTIL pattern. In Line 19 we define an alphabet of
internal control events which is used later to make only RoboChart events visible.

The main process and auxiliary functions that calculate the alphabets of the activity nodes
are presented in Figure A.2. In this figure, Line 21 presents the main process of the translated
diagram. In Line 22, we have an auxiliary process used to synchronise events when the diagram
concludes. In Line 24, we have the process that is invoked by the main process that composes the
internal part of the diagram with the Token Manager, which defines the beginning, the execution
and the end of the diagram. From Lines 25 to 30 we have the alphabet functions that use the
previously mentioned tokens for each node. Such functions return the alphabet of each node. In
Line 31, we have the union of all these alphabets.

A.1. CSP SPECIFICATION FOR THE ANGULAR PROPERTY 51

Figure A.1: Angular - Channels and datatypes

Figure A.2: Angular - Main Process and Alphabet diagram

In Figure A.3 we have from Lines 33 to 36 the functions that yield the processes for the
nodes. Given the node token, each function yields the CSP process for a particular node. From
lines 37 to 44 we have the process of each node, note that there are two very similar lines for
each process, one representing the behaviour of the node and the other guaranteeing termination,
that is, it can be interrupted by the endDiagram event. In lines 46 and 47, we have the Token
Manager process that controls the amount of active tokens in the diagram.

In Figure A.4, we have in Line 49 a refinement expression in the traces model. From
Lines 51 to 70 we have the functions used to describe the modelled property. In the other lines
we have the call for the composition of the nodes that will use both the alphabet functions and
the function that return the processes of the nodes.

A.1. CSP SPECIFICATION FOR THE ANGULAR PROPERTY 52

Figure A.3: Angular - Process diagram and Token manager

Figure A.4: Angular - Refinement and composeNodes

535353

References

[1] Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the Volumes Are Based on
the Advanced Course on Petri Nets, Berlin, Heidelberg, 1996. Springer-Verlag.

[2] Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. Roboflow: A flow-based visual
programming language for mobile manipulation tasks. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 5537–5544. IEEE, 2015.

[3] Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[4] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Proceedings of the 14th International
Conference on Computer Aided Verification, CAV ’02, page 359–364, Berlin, Heidelberg,
2002. Springer-Verlag.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions Programming
Languages Systems, 8(2):244–263, 1986.

[6] Bianca Darolt,i. Software engineering for robotics: an autonomous robotic vacuum cleaner
for solar panels. Master’s thesis, University of York, 2019.

[7] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane. Robotml,
a domain-specific language to design, simulate and deploy robotic applications. In
International Conference on Simulation, Modeling, and Programming for Autonomous
Robots, pages 149–160. Springer, 2012.

[8] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 17 A Modern
Refinement Checker for CSP. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 187–201, 2014.

[9] David Harel and PS Thiagarajan. Message sequence charts. In UML for Real, pages
77–105. Springer, 2003.

[10] James A Hilder, Nick DL Owens, Mark J Neal, Peter J Hickey, Stuart N Cairns, David PA
Kilgour, Jon Timmis, and Andy M Tyrrell. Chemical detection using the receptor density
algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 42(6):1730–1741, 2012.

[11] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23:279–295, May
1997.

[12] Louis Hugues and Nicolas Bredeche. Simbad: an autonomous robot simulation package
for education and research. In International Conference on Simulation of Adaptive
Behavior, pages 831–842. Springer, 2006.

REFERENCES 54

[13] Xuandong Li, Jun Hu, Lei Bu, Jianhua Zhao, and Guoliang Zheng. Consistency checking
of concurrent models for scenario-based specifications. In International SDL Forum, pages
298–312. Springer, 2005.

[14] Lucas Lima, Amaury Tavares, and Sidney C. Nogueira. A framework for verifying
deadlock and nondeterminism in uml activity diagrams based on csp. Science of Computer
Programming, 197:102497, 2020.

[15] Waldeck Lindoso, Sidney C. Nogueira, Renato Domingues, and Lucas Lima. Visual
specification of properties for robotic designs. In Formal Methods: Foundations and
Applications: 24th Brazilian Symposium, SBMF 2021, Virtual Event, December 6–10,
2021, Proceedings, page 34–52, Berlin, Heidelberg, 2021. Springer-Verlag.

[16] Gavin Lowe. Specification of communicating processes: Temporal logic versus
refusals-based refinement. Form. Asp. Comput., 20(3):277–294, May 2008.

[17] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon, and Michael Fisher. Formal
specification and verification of autonomous robotic systems: A survey. ACM Comput.
Surv., 52(5), September 2019.

[18] Claudio Menghi, Christos Tsigkanos, Thorsten Berger, and Patrizio Pelliccione. Psalm:
Specification of dependable robotic missions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pages
99–102. IEEE, 2019.

[19] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten
Berger. Specification patterns for robotic missions. IEEE Transactions on Software
Engineering, 47(10):2208–2224, 2019.

[20] Bart Meyers, Hans Vangheluwe, Joachim Denil, and Rick Salay. A framework for
temporal verification support in domain-specific modelling. IEEE Transactions on
Software Engineering, 46(4):362–404, 2018.

[21] A. Miyazawa and A. L. C. Cavalcanti. Chemical detector. Available in:
https://robostar.cs.york.ac.uk/case_studies/
autonomous-chemical-detector/autonomous-chemical-detector.
html. Access at: may 05, 2022.

[22] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, and Jon Timmis. Automatic
property checking of robotic applications. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3869–3876. IEEE, 2017.

[23] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis, and Jim Woodcock.
Robochart: modelling and verification of the functional behaviour of robotic applications.
Software & Systems Modeling, 18(5):3097–3149, 2019.

[24] Yvonne Murray, David A. Anisi, Martin Sirevåg, Pedro Ribeiro, and Rabah Saleh Hagag.
Safety assurance of a high voltage controller for an industrial robotic system. In Gustavo
Carvalho and Volker Stolz, editors, Formal Methods: Foundations and Applications, pages
45–63, Cham, 2020. Springer International Publishing.

https://robostar.cs.york.ac.uk/case_studies/autonomous-chemical-detector/autonomous-chemical-detector.html
https://robostar.cs.york.ac.uk/case_studies/autonomous-chemical-detector/autonomous-chemical-detector.html
https://robostar.cs.york.ac.uk/case_studies/autonomous-chemical-detector/autonomous-chemical-detector.html

REFERENCES 55

[25] Department of Computer Science: University of York. Robochart case studies. Available
in: https://robostar.cs.york.ac.uk/case_studies/. Access at: may 04,
2022.

[26] OMG. OMG Unified Modeling Language (OMG UML), Version 2.5.1. Technical report,
Object Management Group, December 2017.

[27] Izzet Pembeci, Henrik Nilsson, and Gregory Hager. Functional reactive robotics: An
exercise in principled integration of domain-specific languages. In Proceedings of the 4th
ACM SIGPLAN international conference on Principles and practice of declarative
programming, pages 168–179, 2002.

[28] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, page 46–57, USA, 1977.
IEEE Computer Society.

[29] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, 1998.

[30] A. W. Roscoe. On the expressive power of csp refinement. Formal Aspects of Computing,
17(2):93–112, 2005.

[31] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Huseyin Ergin. Atompm: A web-based modeling environment. In Joint
proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and
ACM Student Research Competition co-located with the 16th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2013): September
29-October 4, 2013, Miami, USA, pages 21–25, 2013.

https://robostar.cs.york.ac.uk/case_studies/

	Introduction
	Background
	RoboChart
	UML Diagrams
	CSP notation

	Diagrammatic Language for properties
	Language syntax
	Language semantics

	Tool Support
	Architecture
	Parser module
	FDR Bridge module
	Robochart property analysis
	Traceability

	Case Study
	Solar Panel Vacuum Cleaner
	Chemical Detector
	Verification of properties

	Related Work
	Conclusion
	APPENDIX
	CSP specification for the Angular property

	References

