
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO
PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA APLICADA

Thiago Henrique Ferreira Gomes

The software architecture challenges in Agile Distributed Software Development
environments

Recife
2023



Thiago Henrique Ferreira Gomes

The software architecture challenges in Agile Distributed Software Development
environments

Trabalho apresentado ao Programa de Pós-
graduação em Informática Aplicada da Universidade
Federal Rural de Pernambuco, como requisito par-
cial para obtenção do grau de Mestre em Ciência da
Computação.

Área de Concentração: Ciência da Computação

Orientador (a): Prof. Dr. Marcelo Luiz Monteiro
Marinho

Recife
2023



Dados Internacionais de Catalogação na Publicação 
Universidade Federal Rural de Pernambuco

Sistema Integrado de Bibliotecas
Gerada automaticamente, mediante os dados fornecidos pelo(a) autor(a)

G633t GOMES, THIAGO HENRIQUE FERREIRA
        The software architecture challenges in Agile Distributed Software Development environments / THIAGO
HENRIQUE FERREIRA GOMES. - 2023.
        111 f. : il.

        Orientador: Marcelo Luiz Monteiro Marinho.
        Inclui referências e apêndice(s).

        Dissertação (Mestrado) - Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em
Informática Aplicada, Recife, 2023.

        1. Software Architecture. 2. Distributed Software Development. 3. Communication. 4. Agile Practices. I.
Marinho, Marcelo Luiz Monteiro, orient. II. Título

                                                                                                                                                   CDD 004



Thiago Henrique Ferreira Gomes 
 
 
 

The software architecture challenges in Agile 
Distributed Software Development 

environments 
 
Dissertation submitted to the Applied 
Informatics postgraduate program 
(PPGIA) from Federal Rural 
University of Pernambuco (UFRPE), 
as part of requirements to obtain the 
Master of Science degree in Applied 
Informatics. The dissertation was 
approved by unanimous decision in 
a public session on August 30th, 
2023. 

 
 

EXAMINATION BOARD 
 
 

_______________________________________ 
Advisor: Prof. Dr. MARCELO LUIZ MONTEIRO MARINHO 

Federal Rural University of Pernabuco- UFRPE 
 
 

___________________________________________________ 
Prof Dr. RICARDO ANDRE CAVALCANTE DE SOUZA 

Federal Rural University of Pernabuco - UFRPE 
 
 

___________________________________________________ 
Prof. Dr. IVALDIR HONÓRIO DE FARIAS JÚNIOR 

University of Pernambuco - UPE 
 



Dedico aos meus queridos familiares, pelo apoio incondicional, paciência e incentivo ao
longo desses anos de estudo. Vocês foram a minha base e fonte de amor e inspiração. Ao meu
orientador, Marcelo Marinho, pelo conhecimento transmitido, pelas valiosas orientações e pela
confiança depositada em meu trabalho.



ACKNOWLEDGEMENTS

Dedico esta dissertação de mestrado a todas as pessoas que estiveram ao meu lado durante
essa intensa jornada acadêmica.

À minha família, que sempre me apoiou incondicionalmente, compartilhando das minhas
alegrias e me fortalecendo nos momentos de desafio, principalmente meus pais, Gilvson e
Edileide e a minha irmã Thayná e minha avó Suely. Aos familiares que não estão mais presentes
entre nós mas que de uma forma contribuíram para minha formação pessoal e profissional,
meus avós José e Edite e Gildemar e meu tio Roberto. Obrigado pelo amor, compreensão e
pelo constante incentivo ao meu crescimento pessoal e profissional.

Aos meus amigos, que foram verdadeiros pilares de apoio ao longo desses anos. Obri-
gado pela paciência, pelas palavras de encorajamento e pela companhia nos momentos de
descontração que aliviaram o peso das responsabilidades acadêmicas.

Ao meu orientador, Marcelo Marinho, pelo valioso suporte, orientação e conhecimento
compartilhado ao longo desta pesquisa. Sua expertise e dedicação foram fundamentais para o
desenvolvimento deste trabalho.

Aos professores e profissionais da minha área de estudo, cujas contribuições enriqueceram
meu conhecimento e ampliaram minha visão sobre o tema. Obrigado por compartilharem suas
experiências e me inspirarem a buscar sempre a excelência na minha área de atuação.

Aos participantes da pesquisa, cuja disponibilidade e interesse em contribuir foram essen-
ciais para a realização deste estudo. Agradeço por compartilharem suas perspectivas e exper-
iências, tornando possível a obtenção de dados relevantes e significativos.

A todos que, de alguma forma, torceram por mim e me motivaram a seguir em frente, meu
mais sincero agradecimento. Esta conquista não seria possível sem o apoio e encorajamento
de cada um de vocês.

Que esta dissertação seja uma pequena retribuição por todo o carinho e suporte que recebi
ao longo desta jornada. Compartilho essa conquista com vocês e espero que ela possa inspirar
e contribuir para o avanço do conhecimento em nossa área.

Obrigado a todos por fazerem parte desta caminhada e por tornarem esta realização ainda
mais especial.



RESUMO

À medida que o cenário de desenvolvimento de software se globaliza, a comunicação
efetiva desempenha um papel fundamental na garantia do sucesso das equipes de desen-
volvimento distribuídas. Esta dissertação explora a influência da arquitetura de software na
comunicação em ambientes de desenvolvimento distribuído de software. Através de uma abor-
dagem abrangente que inclui um mapeamento sistemático da literatura e um estudo de caso,
buscamos compreender e analisar como as diferentes arquiteturas de software influenciam os
padrões e práticas de comunicação dentro de equipes dispersas. Realizamos um mapeamento
sistemático para identificar pesquisas existentes sobre a relação entre arquitetura de software
e comunicação em desenvolvimento de software distribuído (DSD). Esse mapemanto fornece
uma visão abrangente do estado atual do conhecimento na área e destaca práticas-chave,
tendências e lacunas de pesquisa. A partir dos insights obtidos no mapeamento sistemático,
aprofundamos o assunto por meio de um estudo de caso detalhado. Nosso estudo de caso
envolve um departamento de uma multinaticional européia que adota desenvolvimento de
software distribuído trabalhando em projetos diversos, cada um com características distin-
tas de arquitetura de software. Ao analisar os artefatos de comunicação da empresa, realizar
entrevistas e observações, buscamos descobrir de que forma específica a arquitetura de soft-
ware impacta a eficácia e a eficiência da comunicação. As descobertas tanto do mapeamento
sistemático quanto do estudo de caso contribuem para uma compreensão abrangente da com-
plexa relação entre arquitetura de software e comunicação em ambientes de desenvolvimento
de software distribuídos. Identificamos os pontos fortes e limitações de diferentes arquiteturas
de software na facilitação ou obstáculo à comunicação e colaboração efetivas. Além disso,
fornecemos recomendações práticas para projetar arquiteturas de software que melhorem a
comunicação em equipes distribuídas, aumentando assim o sucesso geral do projeto. Este
trabalho destina-se a beneficiar arquitetos de software, gerentes de projetos e profissionais
envolvidos em iniciativas de DDS. Ao obter insights sobre o impacto da arquitetura de soft-
ware na comunicação, as organizações podem tomar decisões informadas para otimizar seus
processos de desenvolvimento, melhorar a colaboração da equipe e aprimorar os resultados dos
projetos em ambientes de desenvolvimento de software distribuído.

Palavras-chaves: Arquitetura de Software. Desenvolvimento de software distribuido. Comu-
nicação. Práticas Ágeis.



ABSTRACT

As the software development landscape becomes increasingly globalized, effective com-
munication plays a pivotal role in ensuring the success of distributed development teams. This
work explores the impact of software architecture on communication in Distributed Software
Development (DSD) environments. We aim to understand and analyze how different software
architectures influence communication patterns and practices within globally dispersed teams
through a comprehensive approach that includes a systematic literature mapping and a case
study. We conduct a systematic mapping to identify existing research on the relationship be-
tween software architecture and communication in global software development. This mapping
provides a comprehensive overview of the current state of knowledge in the field and highlights
key practices, trends, and research gaps. Building upon the insights gained from the system-
atic mapping, we then delve deeper into the subject through a detailed case study. Our case
study involves a department from a multinational European company that adopts distributed
software development teams working on diverse projects, each with distinct software archi-
tecture characteristics. We aim to uncover how software architecture impacts communication
effectiveness and efficiency by analyzing communication artifacts, interviews, and observations.
The systematic mapping and case study findings contribute to a comprehensive understand-
ing of the complex relationship between software architecture and communication in DSD
environments. We identify the strengths and limitations of different software architectures
in facilitating or hindering effective communication and collaboration. Moreover, we provide
practical recommendations for designing software architectures that enhance communication
in distributed teams, improving overall project success. This work is intended to benefit soft-
ware architects, project managers, and practitioners involved in DSD initiatives. By gaining
insights into the impact of software architecture on communication, organizations can make
informed decisions to optimize their development processes, improve team collaboration, and
enhance project outcomes in distributed software development environments.

Keywords: Software Architecture. Distributed Software Development. Communication. Agile
Practices.



LIST OF FIGURES

Figure 1 – Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 2 – Selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3 – Systematic Mapping - Publications by year . . . . . . . . . . . . . . . . . 42
Figure 4 – Communication and Decoupled-components mindmap . . . . . . . . . . . 43
Figure 5 – Agile principles and Communication . . . . . . . . . . . . . . . . . . . . . 45
Figure 6 – Architectural-centric development and communication . . . . . . . . . . . 48
Figure 7 – Losely coupled components and DSD . . . . . . . . . . . . . . . . . . . . 49
Figure 8 – Survey - Answers by Country . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 9 – Survey - Answers by Role . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 10 – Survey - Cultural Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11 – Survey - Years of experience . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 12 – Survey - Practices Adoption . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 13 – Survey - Architectural rules on distributed teams . . . . . . . . . . . . . . 54
Figure 14 – Survey - Aspect impact over communication . . . . . . . . . . . . . . . . 55
Figure 15 – Survey - Software Architecture over distributed teams communication . . . 57



LIST OF TABLES

Table 1 – The Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 2 – Papers by engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 3 – Interviewees profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 4 – Survey profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 5 – Standard Deviation - SQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 6 – Standard Deviation - SQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 7 – Standard Deviation - SQ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 8 – Standard Deviation - SQ4 to SQ17 . . . . . . . . . . . . . . . . . . . . . . 56



ACRONYMS

API Application Programming Interface

DDD Domain-Driven Design

EDA Event-driven Architecture

gRPC Google Remote Procedure Call

REST Representational State Transfer

RPC Remote Procedure Call

SOA Service-Oriented Architecture



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 SPECIFIC OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 THEORETICAL REFERENCE . . . . . . . . . . . . . . . . . . . . . 19

2.1 SOFTWARE ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Software Architecture Design . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 ARCHITECTURAL RULES AND DESIGN . . . . . . . . . . . . . . . . . . 20
2.2.1 Application Programming Interface . . . . . . . . . . . . . . . . . . . 20

2.2.2 Domain-Driven Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Event-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Model-Driven Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . 21

2.2.7 REST/RESTful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.8 Component-Based Architecture . . . . . . . . . . . . . . . . . . . . . 23

2.3 DISTRIBUTED SOFTWARE DEVELOPMENT (DSD) . . . . . . . . . . . 24
2.4 AGILE SOFTWARE DEVELOPMENT . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Pair Programmming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.5 Test-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.6 Coding Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.7 Continuous Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 SOFTWARE ARCHITECTURE AND AGILE PRACTICES . . . . . . . . . 28
2.6 CLOSING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 RESEARCH METHOD . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 SYSTEMATIC LITERATURE MAPPING . . . . . . . . . . . . . . . . . . 31
3.1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



3.1.2 Definition of inclusion and exclusion criteria . . . . . . . . . . . . . . 31

3.1.3 Search string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Document selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Data Extraction and Analysis . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Case study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1.2 The case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1.3 Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1.5 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1.6 Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Preparation to collect data . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Gathering evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Analyzing the collected data . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.5 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 CLOSING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 SYSTEMATIC LITERATURE MAPPING (SLM) RESULTS . . . . . . . . . 42
4.1.1 Microservices and Communication . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Architectural-centric development and performance on distributed

teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Agile principles and DSD communication . . . . . . . . . . . . . . . . 47

4.1.4 Losely coupled components and communication challenges on DSD 49

4.2 CASE STUDY RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 CLOSING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 SYSTEMATIC MAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.1 How software architecture design impacts the DSD environment? . 68

5.1.2 Is there any architectural design that can positively impact the DSD

environment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



5.2 CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1.1 Coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1.2 Adopting archetypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1.3 Decoupled Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1.4 Team independency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1.5 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2.1 Communication Facilitator . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2.2 Face-to-face meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2.3 Less team interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2.4 Agile ceremonies and management frameworks . . . . . . . . . . . . . . . 77
5.2.2.5 Alignment meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3.1 Learning culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3.3 Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 DESTILING OUR SUPPOSITIONS . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 SP1: Decoupled software architectures are communication enablers

and can help to mitigate communication challenges in DSD envi-

ronments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 SP2: An Architectural Design which enables agile practices and

follows architectural-centric principles can help to coordinate DSD

teams and mitigate communication challenges . . . . . . . . . . . . . 81

5.4 CAN ARCHITECTURAL DESIGN, WHICH ENABLES AGILE PRACTICES
AND FOLLOWS ARCHITECTURAL-CENTRIC PRINCIPLES, HELP CO-
ORDINATE DSD TEAMS AND MITIGATE COMMUNICATION CHAL-
LENGES? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 CLOSING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 LIMITATIONS AND THREATS TO VALIDITY . . . . . . . . . . . . . . . 85
6.2 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

APPENDIX A – SELECTED PAPERS . . . . . . . . . . . . . . . . 96

APPENDIX B – INTERVIEW QUESTIONS . . . . . . . . . . . . . 97

APPENDIX C – SURVEY QUESTIONS . . . . . . . . . . . . . . . 98

APPENDIX D – EXECUTIVE SUMMARY . . . . . . . . . . . . . . 110



15

1 INTRODUCTION

Organizations operate in an increasingly global environment, opening up new markets and
opportunities, leading to changes in economic conditions and the emergence of competing
products and services (CAMARA et al., 2022).

This globalization trend is also evident in software engineering (SE), where national markets
have evolved into global markets. This shift has created new competition between countries
and fostered a more favorable environment for distributed development, aiming to develop
software faster and more cost-efficiently (MARINHO; NOLL; BEECHAM, 2018).

Many companies worldwide have adopted international software development to capitalize
on the advantages of this global landscape. This approach allows for increased speed through
"follow-the-sun" development, reduced labor costs, proximity to new markets, and access to
skilled resources. Developed countries often outsource their software development to emerging
economies, seeking economic benefits (MARINHO; NOLL; BEECHAM, 2018; JUNIOR et al., 2022).

Distributed Software Development (DSD) refers to a software development approach where
a software project is developed by a team of developers located in different geographic loca-
tions, rather than in a single physical location. DSD also encompasses outsourcing, where
companies contract software development to vendors in their own or other countries (MAR-

INHO; CAMARA; SAMPAIO, 2021; JUNIOR et al., 2022)
However, DSD introduces additional complexity to project management. The physical dis-

tance between teams reduces informal communication that helps clarify specifications and
resolve ambiguities. Cultural and language differences can lead to misinterpretation of require-
ments. Furthermore, limited workday overlap reduces opportunities for synchronous commu-
nication, further hindering effective collaboration (CAMARA et al., 2020).

DSD challenges can be addressed by minimizing inter-site communication. Researches
(SIEVI-KORTE; BEECHAM; RICHARDSON, 2019; YILDIZ; TEKINERDOGAN; CETIN, 2012) suggests
that careful task allocation is vital to achieving optimal communication while reducing the
need for extensive site connections. This approach streamlines workflow, resulting in easier
task completion, fewer meetings, facilitated email exchanges and minimized misunderstandings
due to cultural differences. Task allocation and their interconnections are directly derived from
software dependencies dictated by the software architecture.

Furthermore, Conway (CONWAY, 1968) asserts that the software architecture mirrors the



16

organization’s communication structure. Therefore, creating a modular architecture that aligns
with the organizational structure and available competencies can effectively address DSD
challenges and overcome barriers posed by distance. However, software architecture design is
a highly complex activity.

Architects must consider various factors, including required technologies, interdependencies
between components, resource availability, budget constraints, scheduling, customer require-
ments, and marketing pressures. When dealing with multiple layers or components, achieving
modularity in software design takes a lot of work.

Numerous studies have explored DSD in the context of software project management, de-
velopment processes, and organizational factors (SIEVI-KORTE; BEECHAM; RICHARDSON, 2019;
YILDIZ; TEKINERDOGAN; CETIN, 2012). However, more research is needed on the intersection
of DSD and software architecture (SIEVI-KORTE; BEECHAM; RICHARDSON, 2019).

1.1 MOTIVATION

The Software architecture design includes components and interfaces (PERRY; WOLF, 1992)
that connect multiple structures (ALI; BEECHAM; MISTRIK, 2010). The software architecture is
used as a project coordination tool (AVRITZER et al., 2010; HERBSLEB, 2007), not only for co-
located projects but also as a mechanism to delegate tasks and coordinate distributed teams
(CLERC; LAGO; VLIET, 2007a; HERBSLEB; GRINTER, 1999).

A well-defined software architecture benefits the global software process, guaranteeing all
team members a common language to define tasks and activities, allowing a better under-
standing of the business domain, regardless of cultural differences (VANZIN et al., 2005).

Software architecture can assume multiple forms, for instance, a layered structure or a type
of structured pipeline. It can present interactions like message based (TAYLOR et al., 1996),
or service-based following the Service-Oriented Architecture (SOA) principles (NEWCOMER;

LOMOW, 2005), the Representational State Transfer (REST) approach (??), or apply one of
the most recent tendencies, denominated microservices (WOLFF, 2016; MALAVOLTA; CAPILLA,
2017). The microservices approach evolved from the increasing use of cloud computing (QIAN

et al., 2009; KULKARNI, 2012) e following the *aaS (as a Service) approach.
Through a systematic literature review, Ali et al. (ALI; BEECHAM; MISTRIK, 2010) synthesize

concepts that can be applied during the architecture design process. Other studies, like (FAUZI;

BANNERMAN; STAPLES, 2010), consider software development and configuration; however, they



17

only focus on the process perspective. This indicates that a gap exists in research related to
software architecture design in the context of distributed software development.

Therefore, this study aims to address this gap by investigating the relationship between
communication challenges and software architecture design within DSD. By exploring this
connection, we hope to shed light on the unique considerations and potential solutions that
can enhance software architecture practices in a distributed development setting.

Based on that we define our research question which will drive our research during this
work: Can architectural Design, which enables agile practices and follows architectural-centric
principles, help coordinate DSD teams and mitigate communication challenges?

1.2 OBJECTIVES

Aligned to defined research questions, this work aims to contribute a deeper understanding
of the relationship between software architecture and communication in distributed software
development, providing valuable insights and recommendations for improving collaboration
and coordination in DSD projects.

1.3 SPECIFIC OBJECTIVES

In order to achieve the overall objective of this work, the following specific objectives are
defined:

• Identify the influence of software architecture on communication in distributed software
development environments.

• Gain insights into how distributed teams handle communication challenges in real-world
situations.

• Identify and explore practices that can be integrated with software architecture to en-
hance the communication process in DSD settings.

• Extract lessons learned as outcome and build an executive report about it.

To fulfill the objectives of this study, we conducted a systematic mapping to gather evi-
dence and gain insights into the practices employed for mitigating communication challenges in



18

software architecture within distributed teams. Subsequently, a case study explored how a spe-
cific company has embraced architectural practices in their distributed teams. The case study
employed a combination of survey and interview techniques. The survey collected opinions
regarding the identified practices identified during the mapping phase. At the same time, the
interviews provided qualitative data on the interviewees’ perspectives regarding the selection
of software architecture and its impact on team communication.

The remainder of this study is organized as follows: In chapter 2, we introduce the back-
ground regarding the research subjects that explains the research problem. Chapter 3 describes
the proposed methodologies and the research questions. Chapters 4 and 4.2 present the results
and implications of the systematic mapping executed and the case study, respectively. Then,
chapter 5 has the purpose of discussing the findings and limitations. Finally, in Chapter 6, we
state some concluding remarks and areas of future research directions.



19

2 THEORETICAL REFERENCE

This chapter will present the main concepts needed to understand the topic discussed in
this work. We also will discuss the related references relevant to this work, connecting the
central points defined by every piece and the point out the gaps.

2.1 SOFTWARE ARCHITECTURE

The international standard ISO/IEC/IEEE 42010:2011 (MAY, 2011) defines Software Ar-
chitecture as “fundamental concepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its design and evolution”. Software Ar-
chitecture Design comprehends building software elements and the relationship between them
in a manner that the connection between these elements drives us to a high-level description.
The architecture modeling documents the decisions and aspects that compose the software
architecture (SIEVI-KORTE; BEECHAM; RICHARDSON, 2019).

2.1.1 Software Architecture Design

The software architecture modeling includes components and interfaces (PERRY; WOLF,
1992), which interconnect multiple structures (ALI; BEECHAM; MISTRIK, 2010). The software
architecture enables project coordination (AVRITZER et al., 2010), for colocated teams and as a
mechanism to allocate tasks and coordinate distributed teams (CLERC; LAGO; VLIET, 2007a).

A well-defined software architecture leverages the process of global software, ensuring
every team member has a common language to define tasks and activities. Having a common
language enables a better understanding of the business domain regarding cultural differences
(VANZIN et al., 2005).

Software architecture can assume multiple shapes, such as a layered structure or structured
pipeline. It can interact as the message-based architecture (TAYLOR et al., 1996), or service-
based following the SOA (NEWCOMER; LOMOW, 2005), the RESTful approach (RICHARDSON;

AMUNDSEN; RUBY, 2013), or even one of the recent tendencies, denominated microservices
(WOLFF, 2016; MALAVOLTA; CAPILLA, 2017). The microservice approach evolved based on the
increasing demand for cloud computing (QIAN et al., 2009; KULKARNI, 2012) and following the



20

*aaS (as a Service) structure.

2.2 ARCHITECTURAL RULES AND DESIGN

This section will describe some of the architectural rules, designs, and styles necessary to
understand the remaining work.

2.2.1 Application Programming Interface

Historically Application Programming Interface (API) have existed since the beginning
of personal computers to connect two or more devices. Well-designed APIs can provide the
scaffold necessary for rapid innovation consequence of the critical link enablement that this
technic supplies. (IBM, 2016)

There are multiple applications for APIs like API-first(BEAULIEU; DASCALU; HAND, 2022),
REST(LI, 2011; PAUTASSO, 2009), Remote Procedure Call (RPC) (MICROSYSTEMS, 2009),
Google Remote Procedure Call (gRPC) (CHAMAS; CORDEIRO; ELER, 2017; WANG; ZHAO; ZHU,
1993), and so on. The use of each of these techniques depends on the problem that is going
to solve.

2.2.2 Domain-Driven Design

Domain-Driven Design (DDD), defined by Eric Evans (EVANS, 2004) as a philosophy to
help with the challenges of building software for complex domains. DDD is not just about
software structure but also communication and common language.

Some design patterns are widely adopted when following DDD. These practices help solve
everyday problems the developers face during development. These practices include, but not
limiting it to, Repositories, Services, Aggregates, Factories, and Values Objects. (EVANS, 2014)

2.2.3 Event-Driven Architecture

Event-driven Architecture (EDA) is a design paradigm in which a software component
executes in response to receiving one or more event notifications. EDA is more loosely coupled
than the client/server paradigm because the component that sends the notification doesn’t



21

know the identity of the receiving components when compiling. (MARÉCHAUX, 2006; CLARK;

BARN, 2011)
One of the main characteristics of EDA is the decoupled interaction, where the sender and

the recipient of the message do not know each other existence. (MARÉCHAUX, 2006)

2.2.4 Microservices

Microservices is an architectural style for developing software systems that emphasize de-
composing complex applications into more minor, loosely coupled services. Each microservice
focuses on a specific business capability and operates as an independent component that can
be developed, deployed, and scaled independently. This approach promotes flexibility, scala-
bility, and maintainability in large-scale software systems. (FOWLER; LEWIS, 2014; NEWMAN,
2021)

2.2.5 Model-Driven Design

Model-driven design is an approach to software engineering and system design that em-
phasizes using models to represent and describe the various aspects of a system. It involves
creating abstract models that capture the system’s desired behavior, structure, and functional-
ity and then using these models as a basis for system development. In model-driven design, the
system is typically represented by a set of interconnected models, each focusing on a specific
aspect of the system.(EVANS, 2004)

2.2.6 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a software architectural style that facilitates the
design and development of loosely coupled, modular, and reusable software systems. In SOA,
applications are composed of individual services that are self-contained and independent of
each other, providing specific functionality as a service to other components or applications
within a network. (ERL, 1900)

A service in SOA is a self-contained unit of functionality that can be accessed and in-
voked over a network through well-defined interfaces. These services communicate by ex-
changing messages, typically using a standardized protocol such as HTTP(BELSHE; PEON,



22

2015), SOAP(GUDGIN et al., 2003), REST(DOGLIO, 2015), or RESTful(BIEHL, 2016).

2.2.7 REST/RESTful

The REST (Representational State Transfer) (DOGLIO, 2015) is an architectural style ap-
proach for designing networked applications that leverage the existing technologies and pro-
tocols of the World Wide Web. REST emphasizes scalability, simplicity, and interoperability
between systems. It is commonly used for building web services, APIs (Application Program-
ming Interfaces), and distributed systems.

Fundamental principles of the REST architectural style include:

• Client-Server: The system is divided into the client (requesting) and server (responding)
components, allowing them to evolve independently. Clients send requests to servers,
which process the requests and return responses.

• Stateless: Each request from a client to a server contains all the necessary information
for the server to understand and process the request. The server does not maintain any
client-specific state between requests. This simplifies server implementation and allows
for scalability and fault tolerance.

• Uniform Interface: REST defines a uniform and standardized set of constraints for re-
source interaction. This includes using a consistent and predictable set of methods (such
as GET, POST, PUT, DELETE) to manipulate resources and adhere to resource iden-
tification, representation, and manipulation principles.

• Resource-Based: Resources are at the core of REST. Each resource is identified by a
unique URI (Uniform Resource Identifier) and can be represented in various formats,
such as XML, JSON, or HTML. Clients interact with resources through the standard
HTTP methods.

• Stateless Communication: Each request from the client to the server should contain all
the necessary information to process the request. The server does not maintain client-
specific context, allowing for scalability and easy distribution.



23

• Caching: Responses from servers can be cached by clients to improve performance and
reduce the load on the server. Caching can be enabled by adding appropriate cache
control headers to the responses.

REST has gained widespread popularity due to its simplicity, scalability, and wide adop-
tion in web development. It allows different systems to communicate over standard protocols
like HTTP, making integrating and interoperating between various software components and
platforms more accessible. RESTful is used to identify an API that implements the REST
constraints.

2.2.8 Component-Based Architecture

Component-based architecture (RIGBY, 2016; SCHREYER, 2012) is a software development
approach focusing on building systems by composing and reusing modular components. In this
architectural style, software systems are designed as self-contained, independent components,
each responsible for a specific functionality or service.

Components in a component-based architecture are encapsulated modules that expose
well-defined interfaces. They can be developed independently, allowing easier maintenance,
testing, and reusability. Components can be implemented using various technologies and pro-
gramming languages, and they communicate with each other through well-defined interfaces
and protocols.

Critical characteristics of component-based architecture include:

• Reusability: Components are designed to be reusable, promoting the development of
software systems by assembling existing components rather than building everything
from scratch. Reusing components saves development time, improves productivity, and
reduces potential errors.

• Encapsulation: Components encapsulate their internal implementation details, exposing
only the necessary interfaces to interact with other components. This provides a clear
separation of concerns and promotes modularity.

• Independent Development and Deployment: Components can be developed, tested, and
deployed independently. This allows for parallel development efforts and easier integration
of new components or updates into the system.



24

• Interoperability: Components interact with each other through well-defined interfaces
and protocols, enabling interoperability between different components and systems.

• Scalability: Component-based architectures can be easily scaled by adding or removing
components based on the changing requirements of the system.

2.3 DISTRIBUTED SOFTWARE DEVELOPMENT (DSD)

Distributed Software Development (DSD) refers to the execution of software projects by
teams operating beyond the confines of a single company, often situated in diverse geographical
locations (MARINHO et al., 2019). This dispersion can be at a national level, denoting DSD,
or on an international scale, which corresponds to the concept of DSD (MARINHO; NOLL;

BEECHAM, 2018).
Moreover, the term DSD encompasses several scenarios, including organizations relocating

some or all of their software development resources to regions with lower costs or a more abun-
dant talent pool (JUNIOR et al., 2022). It also encompasses organizations dispersing software
development teams across multiple countries (CAMARA et al., 2020). An organization might de-
velop software globally for various purposes, such as use, sale, or integration into a company’s
products (in-sourcing). Alternatively, a company could outsource the software development
process to a supplier within the same country or a different one, where the supplier develops
the software for the client (outsourcing) (CAMARA et al., 2020).

Irrespective of the distribution model chosen, companies pursuing distributed development
anticipate shared advantages, including cost reductions, access to highly skilled global talent,
continuous development around the clock, and potentially lower labor expenses (MARINHO et

al., 2019). However, these advantages are not without their challenges; organizations often
grapple with issues like ineffective communication, cultural disparities, team synchronization,
time zone discrepancies, and maintaining control over the development process (MARINHO;

NOLL; BEECHAM, 2018).

2.4 AGILE SOFTWARE DEVELOPMENT

The “Agile Movement” first came to light with the Agile Manifesto, published by software
consultants and practitioners in 2001 (BECK et al., 2001). The focus was to bring more impor-



25

tance to the human aspects over the processes during the software development cycle (BECK

et al., 2001). The agile methods have much in common, with the same scaffold, but differ
by adopted practices. Extreme Programming (XP) (BECK et al., 2001), Scrum (SCHWABER;

SUTHERLAND, 2011), and Lean Development (HIGHSMITH; HIGHSMITH, 2002) are examples of
agile methods and frameworks. Some methods and frameworks also focus on agile at a large
scale, like SAFe® (LEFFINGWELL, 2018), Scrum of Scrums (SoS) (QURASHI; QURESHI, 2014),
and The Spotify Model (SALAMEH; BASS, 2020).

Agile Practices are techniques employed by agile methods or frameworks during develop-
ment. This work will discuss agile methodologies like Extreme Programming (XP), Scrum,
Scrum of Scrum, The Spotify Model, and others. The following subsections will describe some
practices adopted in these methodologies.

2.4.1 Pair Programmming

Pair programming is a practice adopted by the Extreme Programming (XP) (BECK, 2001)
method and means that two people will develop every code published in an application. The
original way of doing that was sitting side-by-side and programming as equals. This process is
not a teacher-student relationship.

Some researchers (WILLIAMS, 2000; NOSEK, 1998) have shown that pair programming pro-
duces better code quality, improves productivity, and contributes to developing communication
skills.

The first application for Pair programming was in co-located teams. Still, there are refer-
ences (BAHETI; GEHRINGER; STOTTS, 2002) showing the efficiency when adopting this practice
in distributed teams in code quality and productivity.

2.4.2 Automated Testing

Automated testing refers to the practice of using software tools and frameworks to execute
tests automatically without the need for manual intervention. It involves the creation and
execution of test scripts or test cases that verify the behavior, functionality, and quality of
software applications or systems. (DUSTIN; RASHKA; PAUL, 1999)



26

2.4.3 Continuous Integration

The SWEBOK (BOURQUE; FAIRLEY et al., 2014) defines Continuous integration (CI) as a
common practice in many software development approaches. It is typically characterized by
frequent build-test-deploy cycles.

Martin Fowler says that Continuous Integration is “A software development practice where
members of a team integrate their work frequently, usually each person integrates at least
daily - leading to multiple integrations per day. Each integration is verified by an automated
build (including test) to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and allows a team to develop
cohesive software more rapidly.” (FOWLER; FOEMMEL, 2006)

2.4.4 Refactoring

The SWEBOK (BOURQUE; FAIRLEY et al., 2014) defines refactoring as a reengineering
technique reorganizing a program without changing its behavior. It seeks to improve a program
structure and its maintainability. Refactoring techniques can be used during minor changes.

2.4.5 Test-Driven Development

Test-Driven Development (TDD) (BECK, 2003) is a software development approach that
emphasizes writing automated tests before implementing the code. It follows a cyclical process
where small code units are iteratively developed, each time preceded by creating a correspond-
ing test case. The cycle typically consists of three steps: "Red," "Green," and "Refactor."

• Red: In this initial step, a test case is written for a specific desired behavior or function-
ality. The test is intentionally designed to fail since no code has been implemented yet
to satisfy the test criteria.

• Green: The next step involves writing the minimal code necessary to make the previously
created test pass. The focus is on implementing the code logic required to achieve the
desired functionality.

• Refactor: Once the test passes, the code is refactored to improve its design, structure,
and readability without altering its behavior. This step ensures the codebase remains



27

maintainable, adheres to good programming practices, and eliminates duplication or
inefficiencies.

• This iterative process of writing tests first, implementing code to pass those tests, and
refining the code is repeated continuously throughout the development cycle. The goal
is to create a comprehensive suite of tests that continuously validate the correctness of
the code and provide a safety net for making changes in the future.

2.4.6 Coding Standards

The ISO/IEC/IEEE International Standard - 12207:2017 (ISO/IEC/IEEE. . . , 2017) defines
coding standards as part of the development process, and defining it will help clarify the
implementation path. Coding standards, also known as programming standards or coding
conventions, are a set of guidelines and rules that developers follow when writing source code.
These standards define the preferred coding style, formatting, and structure for a particular
programming language or development environment. They aim to improve code readability,
maintainability, and collaboration among developers working on the same codebase.

2.4.7 Continuous Delivery

Continuous Delivery (CD) (HUMBLE; FARLEY, 2010) is a software development practice
that aims to enable frequent and reliable releases by automating the software delivery process.
It focuses on ensuring that software can be deployed to production environments rapidly,
efficiently, and sustainably.

In Continuous Delivery, the software is built, tested, and prepared for release in a stream-
lined and automated fashion. It involves the following fundamental principles and practices:

• Continuous Integration (CI): Developers frequently integrate code changes into a shared
repository, triggering an automated build process. This ensures that code changes are
regularly tested for integration issues and conflicts.

• Automated Testing: Extensive automated testing, including unit tests, integration tests,
and functional tests, is an integral part of Continuous Delivery. These tests are executed
as part of the deployment pipeline to validate the software’s functionality, performance,
and stability.



28

• Continuous Deployment: Once the software passes all the automated tests, it can be
automatically deployed to production or staging environments without manual interven-
tion. This allows for rapid and frequent releases.

• Configuration Management: The configuration and environment setup needed for deploy-
ment are version-controlled and automated. This ensures that deployments are consistent
and reproducible across different environments.

• Deployment Pipeline: Continuous Delivery relies on a deployment pipeline, a series of
automated steps that take code changes from version control through build, testing, and
deployment. The pipeline provides visibility into the status of each stage and enables
efficient collaboration and feedback among team members.

• Monitoring and Feedback: Continuous Delivery emphasizes monitoring the software in
production and gathering user feedback. This feedback is used to continuously improve
the software and inform future development iterations.

Humble (HUMBLE; FARLEY, 2010) also shows the anti-patterns that are consequences of
not adopting these principles, like deploying software manually, deploying to a production-like
environment only after development is complete, and manual configuration management of
production environments.

2.5 SOFTWARE ARCHITECTURE AND AGILE PRACTICES

Some recent studies have reviewed the relationship between agile practices and software
architecture.

Yang et al. (YANG; LIANG; AVGERIOU, 2016) present general benefits of combining architec-
ture and agile practices; like architectural evolution, the architecture-agility combination can
facilitate the continuous development of architecture, and the same combination can guide
architects in the decision-making process of implementing changes in each agile iteration.
From the developer’s perspective, agile development can deliver early information and help
them make design decisions. Another benefit is the rearchitecting cost; architecting in large
increments reduces rearchitecting in agile development because rework costs are incurred due
to architecture-related defects and overproduction waste from increments.



29

Nord and Tomayko (NORD; TOMAYKO, 2006) present some value added through architecture-
centric activities combined with agile practices; the designing process provides early feedback
to identify trade-offs, risks, and return on investment of architectural decisions.

Breivold et al. (BREIVOLD et al., 2010) show a set of empirical studies related to TDD where
applying it increases the code quality and reduces by 40% the number of defects compared
with the traditional software development process. Regarding architecture, TDD is a technique
that encourages simple design, although the effect of TDD on software architecture is an area
where the findings are embedded in empirical discoveries.

2.6 CLOSING REMARKS

In this chapter, we laid the foundation by introducing and elaborating upon the fundamental
concepts that are necessary for comprehending the forthcoming work. These concepts serve
as the bedrock upon which the entire study rests, providing readers with the tools to navigate
the intricate terrain ahead. By delving into the intricacies of these concepts now, we pave the
way for a this dissertation. Armed with this conceptual toolkit, readers will be able to traverse
the intricate discussions and analyses that await, unlocking insights and a more appreciation
of the research to follow.



30

3 RESEARCH METHOD

This work employs a methodological approach combining systematic mapping and a com-
prehensive case study to achieve its research objectives. The systematic mapping phase involves
a literature review to identify and categorize existing studies in the field, providing a structured
overview of the research landscape. Subsequently, a case study focuses on a specific context of
interest. The case study employs a mixed-methods approach, incorporating in-depth interviews
and a survey. Interviews are conducted with key stakeholders and experts to gather qualitative
insights, while the survey collects quantitative data from a broader sample, enhancing the
findings. The integration of these methods enables a holistic understanding of the research
problem, combining rich qualitative insights with statistically significant quantitative data.
Figure 1 present an overview of the process applied.

Figure 1 – Method overview



31

3.1 SYSTEMATIC LITERATURE MAPPING

We adopted a systematic and focused approach to examine the relevant literature in this
study. Rather than uncovering every recorded practice, we aimed to select a representative
collection of studies to identify recurring themes.

Established SLM guidelines (PETERSEN et al., 2008) recommend that a reviewer carry out
the following steps: (i) search for Relevant Studies; (ii) study selection; (iii) data extraction;
(iv) results analysis; (v) results synthesis.

We conducted a SLM, following the guidelines proposed by Kitchenham and Charters
(KITCHENHAM; CHARTERS, 2007). First, we defined the research questions to guide us during
this study. After this, we specify the keywords and their synonyms related to our research topic
and use them to build our search string. Next, we selected the target databases and executed
the search string. Finally, we started the extraction processing that will be described in more
detail in section 3.1.4.

3.1.1 Research questions

We sought to answer the following research questions:

RQ1 How software architecture design impacts the DSD environment?

RQ2 Is there any architectural design that can positively impact the DSD environment?

3.1.2 Definition of inclusion and exclusion criteria

We use comprehensive selection criteria to help us identify more studies. The selection
criteria used in this study are described in Table 1.

3.1.3 Search string

We used terms related to software architecture, global software development, development
practices, and their synonyms to build our search string. To have a more accurate outcome,
we decided to limit our results to publications from 2003. We selected this year considering



32

Table 1 – The Selection Criteria

Criteria

Inclusion

• Studies that approach using software architecture inside of the DSD
environment.

• Papers in which the keywords appear on Abstract and/or Author key-
words.

Exclusion

• Papers are not related to DSD and software architecture design simul-
taneously.

• Studies related to teaching DSD.

• Studies which focus is not software architecture design.

• Studies not written in English.

the first paper found related to decoupled-resilient software architectures, written by Perrey
and Lycett (PERREY; LYCETT, 2003).

To identify a set of relevant papers for our study, we conducted searches using a targeted
group of keywords. Our search strategy began with examining top-ranked hits using simple
keywords, which the final complex search string may have overlooked. We started with general
keywords such as Software Architecture, Microservices, DSD, Agile Methods, Hybrid Methods,
and their possible synonyms to cast a wide net.

We used the following boolean search string to ensure that we captured a wide variety of
papers:

((“Resilient software architecture” OR “Decoupled software architecture” OR “Resilient
software architectures” OR “Decoupled software architectures” OR “Decoupled-resilient soft-
ware architecture” OR “Decoupled-resilient system architecture” OR “Decoupled-resilient sys-
tems architecture” OR “modern software architecture” OR microservices OR “micro services”
OR “software architecture”) AND (Devops OR agile OR scrum OR “extreme programming”
OR “pair programming” OR hybrid OR “lean development” OR “lean software development”
OR SAFe OR “Scaled Agile Framework”) AND (“global software engineering” OR “global
software development” OR “distributed software engineering” OR “distributed software devel-
opment” OR GSE OR GSD OR “distributed team” OR “global team” OR “dispersed team”
OR “spread team” OR “virtual team” OR offshore OR outsource OR nearshore))



33

3.1.4 Document selection

The first step in our selection process involved identifying the relevant databases for our
study. We chose to use IEEE, ACM, Scopus, and Springer. We then executed a research string
built around the keywords outlined in section 3.1.3, resulting in 3471 papers. After removing
duplicates, we were left with 3298 articles. Upon reviewing the titles and abstracts, we narrowed
the selection down to 47 papers, which we read in full. We selected 13 reports (Appendix A)
as our final set of papers. The entire selection process is illustrated in Figure 2.

Figure 2 – Selection process

Engine Selection Removing Duplicated Selected Full-text Selection

ACM 708 682 16 6
Scopus 772 702 11 4
Springer 1371 1314 3 2

IEEE 620 600 17 1

Total 3471 3298 47 13

Table 2 – Papers by engine.

3.1.5 Data Extraction and Analysis

Once we had our set of selected papers, we used ATLAS.ti (Scientific Software Development

GmbH, ) to analyze them. Each study was examined, and we extracted fragments from the
papers (quotes) and grouped these fragments into categories (codes) relevant to our research
questions. The goal was to understand each author’s perspective on software architecture
design, communication, and solutions to mitigate challenges in GSD, as presented in Chapter
4.

Following the analysis, we created three mindmaps to visualize the connections between
ideas and themes. The mindmaps were organized into three categories: communication, soft-
ware architecture design, and solutions to GSD challenges. These mindmaps provide a holistic



34

view of the relationships between various concepts and ideas, which will help us better to
understand the authors’ perspectives on these topics.

3.2 CASE STUDY

Effective communication is a cornerstone for project success, team cohesion, and innova-
tive problem-solving in modern software development. As software development teams grow
in complexity and diversity, the impact of communication on their performance becomes in-
creasingly vital. Thus, undertaking a comprehensive case study within a company offers a
unique opportunity to delve deep into the intricate dynamics of communication within soft-
ware development teams. By closely examining communication patterns, information flow, and
collaboration practices, this case study aims to uncover insights that can optimize team pro-
ductivity, enhance project outcomes, and foster a culture of creativity and knowledge sharing.
By investigating real-world scenarios and contextual factors, this research seeks to contribute
to the knowledge of software development methodologies and provide actionable recommenda-
tions to businesses striving to cultivate efficient communication strategies within their software
development teams.

To execute our case study, we followed the process guidelines defined by (RUNESON; HÖST,
2009), which is composed of five major steps:

1. Case study design: define the objects and plan the case study.

2. Preparation to collect data: describe the process of collecting data.

3. Gathering evidence: case study execution with data collection.

4. Analyzing the collected data.

5. Reporting.

In this work, we defined each step mentioned before in a trustworthy manner to build the
case study to provide quality and credible work.

The following sections will provide more details about each step described before.



35

3.2.1 Case study design

Before conducting our case study, we must establish the process to guide our execution.
Our plan for the study case is based on (ROBSON, 2002) and consists of six components as
described below:

1. Objective: Where we tell what we want to achive with the study.

2. The case: We describe the unit of analysis and what is studied.

3. Theoretical Basis: We describe the references used to build or research questions and
which gave origin to this case study.

4. Research Questions: The research questions will drive the collection process.

5. Procedures: Here, we will explain the strategies adopted to collect data.

6. Selection Strategy: Where to seek the data.

The following sections will illustrate each one of these components and explain the adopted
process.

3.2.1.1 Objective

The main objective of this case study is to identify practices related to software architecture
design that can improve the interaction between team members in a distributed software
development environment. To achive this objective, we are going to conduct an exploratory
analysis.

3.2.1.2 The case

The unit of analysis of this case study was an international retail company with a presence
in all the continents with annual net sales of around 24 million dollars. Its software develop-
ment staff is distributed in 5 different countries. This company has around 60000 employees
worldwide, and about 8.5% are IT professionals. We will analyze a specific department with



36

around 70 people responsible for developing digital products to improve the product develop-
ment process. This department has teams in two countries in the same timezone, adopting a
near-shore approach.

Regarding the guidelines adopted by this company related to adopting tools, programming
languages, and guidelines, we can describe the following guidelines. The main programming
languages used include Java, JavaScript, Groovy, Golang, and Python. In terms of tools, we
rely on Jira, Bitbucket, Git, Confluence, Jenkins, Kubernetes, and Docker. These guidelines
serve as a foundation for our development and collaboration processes.

3.2.1.3 Theoretical Basis

The theoretical basis of this case study is our theoretical reference defined on Chapter 2
and also from the systematic mapping results presented on Chapter 4.

3.2.1.4 Research Questions

In this section, we will present the research questions which drive our investigation process
and the procedures adopted in this case study. These research questions result from the first
stage of this work, our systematic mapping. We present the two questions in the list below.

• Are decoupled software architectures communication enablers and can help to mitigate
communication challenges in DSD environments?

• Architectural Design, which enables agile practices and follows architectural-centric prin-
ciples, can help to coordinate DSD teams and mitigate communication challenges?

3.2.1.5 Procedures

There are two parts to the execution process in this study. The first part is a semi-structured
interview based on the guidelines described by (RUNESON; HÖST, 2009), following the questions
described in Appendix B. In this step, we aim to identify, in a broad way, practices and
approaches which may improve the dynamics in distributed software development teams. These
questions were used to guide our interview, but we were not limited just to them. The second



37

part is a survey based on the inquiries related in Appendix C following the guidelines defined
by (EASTERBROOK et al., 2008), aiming to validate the findings from our interviews.

3.2.1.6 Selection Strategy

The selection strategy adopted in the interviews in this case study was to get people with
leadership roles and convenience because we had easy access.

3.2.2 Preparation to collect data

This section will present every aspect behind the questions and alternatives used in both
interview and survey during the execution.

As defined in Appendix B, every question adopted in our interview has a code that identifies
it; the code structure is a prefix IQ, which determines the question used in the interview step,
followed by a two-digit sequential number, to differentiate the questions, for example, IQ01,
representing the first question from our interview protocol. During this work, we will reference
these questions using their respective code.

As defined in Appendix C, every question and alternative in our survey has a code that
identifies it. This section will use these codes as references to explain the objective after each
question and option.

There are three sections in the Survey. The first section is about the processes and practices
adopted by the teams and to understand how frequently the teams adopt the techniques daily.
In the second part, we aim to collect the respondents’ opinions about the impact of software
architecture on communication aspects in distributed software development teams. In the last
section, we aim to gather demographic information about the subjects to help us to analyze the
respondents’ characteristics. In this case, the objective is to identify these practices’ knowledge
and usage and collect opinions about their impact on team communication.

Each survey question and alternative will have a code to help the reference. The questions
are coded using the prefix SQ and two digits numbers, for instance, SQ07 representing the
seventh question in our survey. The alternatives are coded using the question as a code
prefix followed by a two-digit sequential number to differentiate them. For example, the first
alternative from question seven will have the code SQ07A01. Every code defined can be
founded in Appendix C. The following sections will use these code structures when discussing



38

questions or options.

3.2.3 Gathering evidence

In this section, we will present the evidence collected during the execution. The time aspect
and demographic will be present here, for instance, how long we execute our interviews and
how long the survey was open to answers.

We executed four interviews, and all were recorded, producing 1 hour and 16 minutes of
recorded material. Before starting the interview, we ask for permission from the respondents
to record the interview. Table 3 shows the profile of the interviewees. The interviews were
conducted in three different languages: Portuguese, English, and Spanish as the interviewee
preference. The interviewees were selected by convenience and availability, all of them are from
the same department as the researcher who conducted this research.

Code Role Years of experience Location Interview Language
EA Solution Architect > 10 years Germany English
EB Solution Architect > 10 years Germany English
EC Technical Lead > 10 years Spain Spanish
ED Technical Lead > 10 years Spain Portuguese

Table 3 – Interviewees profile

To keep the respondents anonymous, we assign each one a code, and from now on, we
will refer to them using their respective identification codes.

Interviewee EA is a Solution Architect with a more hands-on approach, his primary respon-
sibility inside the product area is to help multiple teams to design solutions, and he also works
as a Product Owner in some groups. He has a high-level role, sometimes coordinating other
solution architects.

Interviewee EB is also a Solution Architect with a hands-on role. However, he has a different
level of responsibility than interviewee EA; he actuates mainly in a single team and collects
requirements from product owners and business clients.

Interviewee EC and ED have similar role. However, in different teams, they are primarily
responsible for driving the teams to archive their teams objective, helping team members
to remove impediments during their everyday activities, and they also are part of defining
objectives for each quarter.



39

The survey stayed open to answers for six months and was distributed using company
email groups limited just to the unit of analysis. All the answers were anonymous, but the
respondent could inform any e-mail if they wanted to receive the results from this work.

Table 4 presents the respondents’ profile in a high-level view, there you can have a notion
about the amount of experience that each one has, the country where they are located, and
the role performed in the current team. Each respondent has their own identification code, for
the remainder of this work, we will reference the respondents using these codes.



40

Code Role Years of experience Location
S1 Software Developer > 10 years Spain
S2 Software Developer 6-10 years Spain
S3 Software Developer > 10 years Spain
S4 Software Developer > 10 years Spain
S5 Software Developer 3-5 years Spain
S6 Software Developer > 10 years Spain
S7 Software Developer 3-5 years Spain
S8 Software Developer 6-10 years Spain
S9 Software Developer 3-5 years Spain
S10 Software Developer 3-5 years Spain
S11 Team Lead > 10 years Spain
S12 Software Architect 6-10 years Spain
S13 Team Lead > 10 years Spain
S14 Software Developer 6-10 years Spain
S15 Software Architect > 10 years Germany
S16 Team Lead > 10 years Spain
S17 Software Architect > 10 years Germany
S18 Software Architect > 10 years Spain
S19 Enterprise Architect > 10 years Germany
S20 Software Architect > 10 years Germany
S21 IT manager > 10 years Germany
S22 Team Lead > 10 years Spain
S23 Team Lead > 10 years Spain
S24 Team Lead 6-10 years Spain
S25 Quality Analyst 6-10 years Spain
S26 Quality Analyst 3-5 years Spain
S27 Software Developer 6-10 years Spain
S28 Software Developer > 10 years Spain
S29 Quality Analyst 3-5 years Spain
S30 Quality Analyst < 1 year Spain
S31 Software Developer 6-10 years Spain
S32 Software Developer Engineer in Test 6-10 years Spain

Table 4 – Survey profile



41

3.2.4 Analyzing the collected data

As an outcome of the interviews, we had the recordings files, some with just audio and oth-
ers with audio and video. These recordings were transcribed using a cloud service from Amazon
called AWS Transcribe1, developed to convert speech to text. After having the transcription,
we reviewed it and imported the text into Atlas.ti2 to start the qualitative analysis.

The collected data was analyzed following the guidelines defined by the Grounded Theory
(GLASER; STRAUSS; STRUTZEL, 1968). The first step was to code each line identifying concepts
and key sentences and then move to categories and sub-categories where the data from each
participant will be compared for similarities. The second step is to do an Axial analysis using
the defined categories and identify their relationship. The final step is called selective coding,
which consist of determine the core coding and methodically relate it with other codes.

In the survey, all the answers were collected using a Google Form3, and each answer was
placed into a spreadsheet to help us generate graphics and understand the relation between
the data.

3.2.5 Reporting

We will discuss the collected data in this work’s Chapter 4.2.

3.3 CLOSING REMARKS

In this chapter, the methodology employed for this study was elaborated in detail. The
systematic mapping approach was meticulously explained, encompassing the criteria utilized for
paper selection, data extraction, and quality evaluation. Additionally, the rationale underlying
the selection of a pertinent case study was expounded upon, highlighting its alignment with the
research objectives and its significance in generating meaningful results. This methodological
groundwork lays the groundwork for the ensuing presentation of results, offering readers a clear
understanding of the rigor and consideration that underpin the study’s outcomes.

1 https://aws.amazon.com/pt/transcribe/
2 https://atlasti.com/
3 https://google.com/forms/about/



42

4 RESULTS

This chapter presents the culmination of our research endeavor, which seamlessly the
systematic mapping methodology with an intensive case study approach. By harnessing the
synergy between these two methodologies, we have explored and analyzed the multifaceted
landscape of our research domain. In the preceding sections, we unravel the insights garnered
through the systematic mapping phase, unveiling the intricate web of existing knowledge,
trends, and gaps within the field. Building upon this foundational groundwork, we transition
into the core of our investigation - the comprehensive case study. Through a judicious com-
bination of in-depth interviews and a targeted survey, we have delved deep into a specific
contextual setting, capturing both qualitative nuances and quantitative patterns. This chapter
stands as a testament to the relationship between systematic mapping and the case study,
each complementing the other in a pursuit of enriched understanding and findings.

4.1 SYSTEMATIC LITERATURE MAPPING (SLM) RESULTS

In this section, we will present our SLM results, which have been grouped into three main
categories: communication, software architecture, and solutions to mitigate challenges in DSD,
and their interrelationships. We will refer to the selected papers Appendix A using the SMXX
format, where XX represents the paper ID with two digits. We have generated a chronological
distribution chart to analyze the selected papers’ characteristics (Figure 3).

Figure 3 – Systematic Mapping - Publications by year

Transitioning to the forthcoming section showcasing the systematic mapping results, we



43

embark on a journey of structured exploration. These results, curated through a process, will
be presented in a manner that fosters clarity and comprehension. The findings will be organized
into four distinct categories, each represented through illustrative mind maps to facilitate an
intuitive understanding. These visual aids serve as navigational guides, ushering readers through
the intricate web of emerging research trends, gaps, and relationships. As we delve into this
section, the synthesis of systematic mapping outcomes into these comprehensive categories
aims not only to enhance accessibility but also to provide a holistic view of the knowledge
landscape we’ve unraveled.

4.1.1 Microservices and Communication

On the first mindmap (see Figure 4), the first important aspect is that applying Conway’s
law combined with decoupled components can help us mitigate communication challenges,
which means that the components should reflect the organizational structure (CONWAY, 1968;
PETROV; AZALETSKIY, 2023).

Figure 4 – Communication and Decoupled-components mindmap

Sievi-Korte et al. [SM10] bring that using Conway’s law, which states that software ar-
chitecture will, at some point, reflect the organization structure, with modular architectures
could help mitigate many DSD challenges, including communication.

Alzoubi and Gill [SM13] highlight that using AEA as a typical model between the DSD
teams could enable communication and decrease misunderstandings and unnecessary contact
because software definition and structure are needed. This type of model helps to generate



44

decoupled components and provides a possibility to coordinate through the component’s inter-
faces. Using this approach allows the teams abroad to build each part separately. Furthermore,
Sievi-Korte et al. [SM09] present some references recommending using Conway’s law when de-
signing software architecture. These references claim that the more separated the components
are, the more likely the organization will be able to develop them successfully on multiple sites.

This improvement is possible by using components interfaces and reducing the need for
inter-team communication between distributed teams. Each team should follow the interface
definition to build their components and communicate with other teams when any interface
modification occurs. Therefore, in these situations, the communication challenges are mitigated
by having limited communication.

Regarding inter-site coordination, Alzuobi and Gill [SM13] present that architecture-based
development can help us identify highly independent components and use them to divide the
development tasks among the distributed teams, decreasing the necessity for inter-site coordi-
nation. Mishra and Mishra [SM07] also reinforce that software architecture helps decrease the
necessity for communication in a multi-site development project, reducing inter-team commu-
nication.

Lenarduzzi and Sievi-Korte [SM06] highlight that microservices architecture ends up in the
same environment as global software development teams, which are developing different parts
of the same system. They also bring the possibility to overcome communication problems by
having a layer on the communication structure that will become a coordinator among the
teams. Moreover, microservices carry many complexities, so the development must rely on
software architects who can also be the coordinator role. However, having the coordinator has
pros and cons, like:

1. One-level hierarchy : one person will manage the problems, and they will be the only ones
responsible for that. This approach reduces the decision time, although it could result
in a non-democratic team. This person also needs to have a good level of expertise.

2. Two-level hierarchy : the global coordinator and the leader of each microservice team
are two layers of the decision-making chain. It possibility each group to have a repre-
sentative on each decision, although it could generate problems in synchronizing the
communication between the coordinators.

3. Full democracy : the decisions are taken after discussion between all team members or



45

by the most representative from each team. It decreases the possibility of exclusion of
the team members, but the discussion will take longer.

Still, on the first mindmap, Agile Enterprise Architecture (AEA) (HERBSLEB; MOITRA, 2015;
OVASKA; ROSSI; MARTTIIN, 2003) may enable microservices architecture, which can help the
teams achieve the benefits generated by using decoupled components when Conway’s law is
applied. [SM13]

4.1.2 Architectural-centric development and performance on distributed teams

On the second mindmap (see Figure 5), the main focus is the performance in distributed
teams. The main factors impacting the performance focus on architectural aspects, such as
centralized architectural modifications, architecture-centric development, agile enterprise ar-
chitecture, and architectural knowledge management.

Figure 5 – Agile principles and Communication

Alzoubi and Gill [SM13] present that integrated AEA views could serve as a base or common
language that will improve the understanding of the technology point of view and business
perspective. They also provide empirical evidence that implementing AEA will enhance the
performance of DSD teams by implementing AEA and also bring contrast with using EA for
not delivering value.

Regarding knowledge management and communication challenges, Clerc et al. [SM03]
present a study of cases where they analyze two organizations and discuss possible solutions



46

to mitigate some DSD challenges. They found that organizations use a wiki, highly com-
municative meetings, and subsystem websites to reduce difficulty in exchanging information.
Furthermore, both organizations use this strategy when discussing centralized modifications by
onshore teams. The first organization has an architecture team that supports various projects
and defines general architectural rules for all subsystem teams. If there are some system-
specific issues, the subsystem architect should handle them. The second organization has a
software engineering process guideline but often deviates from it. They also had an integration
team responsible for integrating all the systems at the end, but they needed an architectural
compliance verification; due to this, multiple processes co-exist in real-world routine.

The onshore team is responsible for architectural modifications when applying an architectural-
centric development approach. The findings show that it helps avoid communication chal-
lenges, a concept shown on the mindmap as centralized modifications. Architecture-centric
development also improves knowledge management because knowledge transfer practices help
reduce communication challenges.

In the relation between knowledge transfer practices and their impact on communication
challenges, Urrego et al. [SM01] say that large distances between team members indicate
issues related to issuing the resolution, effective communication, the first contact between
distributed members, and lack of trust. Kornstädt and Sauer [SM04] highlight that significant
communication gaps will sooner or later lead to miscommunications, which brings even more
concern, mainly to projects with complex applications. To avoid the source of miscommuni-
cation, Kornstädt and Sauer [SM04] also present a set of development processes applied to
the organization studied, which could mitigate the communication challenges using feedback
loops. Some of these practices are:

1. Releases aim to develop new features for the application and make them available as
soon as possible. It helps to reduce frequent problems related to outdated specifications.

2. Daily stand-ups, a quick meeting to discuss the tasks developed since the last stand-up,
a little bit about what everyone plans to do until the next one, and use evenly to spread
knowledge about what is going on in the project.

3. Pair programming occurs twice a day. Two developers share the same computer, aiming
to have common knowledge about nearly every piece of code. During this process, the



47

developers are exposed to each other criticism every time, and software concepts are
constantly a subject of debate.

Regarding the impact of architectural-based development on communication, Kornstädt
and Sauer [SM04] show that implementing architectural-based development eases communi-
cation by supplying an understanding via one general object of work that all team members
use to comprehend. It also helps to establish a basis for verifiable architectural rules and auto-
matically check them, reducing errors and improving implementation reliability. Kornstädt and
Sauer [SM05] highlighted that the stakeholders could use this object of work point using gen-
eral terms and concepts as a common language, facilitating the discussions and arrangements.
Furthermore, architecture-based development brings other advantages to the communication
aspects, such as task allocation, construction, and record of experience.

Concerning the impact of knowledge transfer practices when applying architectural-based
development, Kornstädt and Sauer [SM04] developed a case study where the organization used
to execute all the architectural modifications only on an onshore team. The learning curve for
offshore developers was remarkably abrupt, whereas supplying good examples like equivalent
components implemented by other developers with more experience could significantly enhance
the knowledge of the offshore team members.

The findings also show that agile enterprise architecture enables performance in distributed
teams and enhances communication, which helps mitigate communication challenges.

Regarding the impact of architectural knowledge on the performance of distributed teams,
Clerc [SM02] brings to our attention that architectural knowledge concentrates on architecting
as a process to make decisions and is not yet accepted abroad by distributed teams developing
software. He also tells us that architectural knowledge needs to address performance as a vital
quality criterion. Clerc also points out that the architectural knowledge topic only applies to
projects on a multi-site.

4.1.3 Agile principles and DSD communication

On the third mindmap (see Figure 6), the main focus is the impact of agile principles on
distributed teams’ communication. Alzoubi and Gill [SM11] show that face-to-face communi-
cation and daily work projects are practical in small co-located teams. However, the opportunity
for these practices is limited in distributed teams. Meanwhile, Alzoubi and Gill also bring that



48

AEA can be used as a communication enabler beyond that by using it as an integrated shared
view.

Figure 6 – Architectural-centric development and communication

Regarding applying agile principles with agile practices over the communication aspects in
distributed teams, Kornstädt and Sauer [SM04] highlight techniques, like pair programming
and daily stand-ups, used by companies to help avoid communication problems by having
frequent communication.

When discussing agile practices’ challenges over communication teams, Gill and Alzoubi
[SM11] tell us that the best result regarding architecture, requirements, and design comes from
self-organized teams, and the communication between business people and developers needs to
happen daily. However, many barriers challenge the communication between developers’ teams
and business people, even more when these teams need to develop features inter-dependant
features and work simultaneously. Otherwise, using AEA as an integrated shared view may
provide a comprehensive picture that can help enhance team communication and overcome
the problems related to cultural differences and spoken language. Consequently, it may increase
communication effectiveness, indicating that AEA can be used as a communication enabler
mechanism. Nevertheless, Alzoubi et al. [SM12] conclude that it is not clear how AEA affects
geographically distributed teams.



49

4.1.4 Losely coupled components and communication challenges on DSD

Figure 7 – Losely coupled components and DSD

On the last mindmap (Figure 7), Sauer [SM09] recommends following some SOLID prin-
ciples (MARTIN, 2017), like the open-closed principle. He also proposes the adoption of the
other tenets, like avoidance of type interdependencies, loose coupling, design by contract, and
strong cohesion, which are the scaffold behind the understandable software to achieve under-
standable software on distributed projects regarding the finite opportunities to communicate
and the source code becomes the primary basis of knowledge.

Tekinerdogan et al. [SM08] bring to our attention that the most acceptable practices of
software architecture strategy constitute loosely coupled components with well-defined con-
tracts. Microservices (NEWMAN, 2021) architectures allow this design strategy and therefore
enforce minor type interdependency.

As a possible solution to mitigate communication challenges in a DSD environment, Sievi-
Korte et al. [SM10] indicate the use of APIs as a crucial architecting practice. In this context,
projects can use APIs to handle interfaces and modules’ boundaries and define product bound-
aries.



50

4.2 CASE STUDY RESULTS

In this section, we present the results from our case study, uniquely through the lens of
qualitative insights. Guided by the voices of our interviewees, we intricately weave their narra-
tives into the fabric of our findings. We arrange these quotations into clusters that encapsulate
shared perspectives, experiences, and underlying trends. This approach not only grants a plat-
form for the participants’ voices but also synthesizes their contributions into coherent themes.
As we navigate through this section, these curated categories stand as windows into perspec-
tives, allowing us to discern patterns, connections, and novel insights that collectively enrich
our understanding of the research landscape.

4.2.1 Survey

We got 32 answers from people in Germany and Spain in the survey. Figure 8 shows the
distribution by country. The answers from Spain are the majority, representing around 84%,
and Germany represents about 16%.

Figure 8 – Survey - Answers by Country

Figure 9 shows the interviewees’ roles, where we can see that almost half of the respondents
are Software Developers, followed by Team Lead (or Technical Lead) and Software Architect
and Quality Analyst, in this order. In this question [SQ19], we also had the option to the
respondent inform a different role, and we got SDET (Software Developer Engineer in Test)
and IT manager as custom answers using the “Others” [SQ19A05] option.



51

Figure 9 – Survey - Answers by Role

To understand the level of cultural diversity, we also asked the respondents [SQ22] to tell
us how many people from different countries they had on their team. Figure 10 shows that the
teams have people from multiple countries. Over 78% of the respondents told us that their
team has more than three people from a country that is not yours. Almost 22% told that they
have 2 or 3 people from a country that is not yours. The respondents also had the alternatives
“Yes, 1 person” [SQ22A01] and “no” [SQ22A04].

Figure 10 – Survey - Cultural Diversity

To identify our interviewees’ background and market experience, we asked them how much
experience they have working with software development. Figure 11 presents the consolidated
answers. We identify that over 2/3 of our interviewees have more than five years of experience,
representing 48,5% of the people with over ten years of experience and 29% of people with



52

experience between 5 and 10 years. We also have around 19% with between 3 and 5 years and
experience and less than 5% with less than one year of experience.

Figure 11 – Survey - Years of experience

In the first section of our survey, we asked about agile practices and the frequency that
these practices were adopted. Figure 12 presents the answers from our interviews. Regarding
automated testing and coding standards, it’s also possible to see the standard deviation from
each answer on Table 5, over 50% of our respondents answered that they always use it, and no
one does not use it. When asked about collective code ownership, over 75% of the respondents
said they adopt it often or always. When considering continuous integration, everyone said that
they adopt it often or always, being 90% continually adopting and 10% often adopting. Pair
programming had more heterogeneous answers, with around 28% of the answers that always
or often adopt it and around 28% that never or rarely adopting it. Regarding refactoring
practice, almost 75% of our respondents said they always or often adopt it. When asked about
the requirements workshop, around 47% said they always or often adopt it. About Scrum of
Scrum, 43% said they often or always use it. About simple/incremental design, 50% of our
respondents said they always or often use it. When asked about Sprint demo/review, around
94% of our respondents said they always or often adopt it. Regarding Test-Driven Development
(TDD), just 25% of our respondents adopt it regularly. Moreover, 91% of our respondents
said they regularly adopt user stories.



53

Practice Standard Deviation
1 Automated Testing 0.98
2 Coding Standards 0.76
3 Collective Code Ownership 0.92
4 Continuous Integration 0.30
5 Pair Programming 1.16
6 Refactoring 0.73
7 Requirements Workshop 0.95
8 Scrum of Scrum 1.24
9 Simple/Incremental Design 1.01

10 Sprint review/demo 0.72
11 Test Driven Development 1.16
12 User stories 0.67

Table 5 – Standard Deviation - SQ1

Figure 12 – Survey - Practices Adoption

Figure 13 presents the answer consolidation related to question SQ02 as described in
Appendix C, it’s also possible to see the standard deviation from each answer on Table 6.
Regarding Application Programming Interface (API), 81% of our respondents said they always
or often use it. When asked about Domain-Driven design, 62,5% said they always or often use



54

it. Event-Driven Design, 78% said they often or always use it. Regarding microservices, all the
respondents said they always, often, or sometimes use them. When asked about Model-Driven
Design, around 69% said they always or often use it. Regarding REST/RESTful practice, all the
respondents said they often or always use it. When asked about Service-Oriented Architecture
and Component-Based Architecture, 50% and 56% said they often or always use it.

Practice Standard Deviation
1 Application Programming Interface 1.02
2 Domain-Driven Design 0.73
3 Event-Driven Architecture 0.97
4 Microservices 0.67
5 Model-Driven Design 0.91
6 REST/RESTful 0.46
7 Service-Oriented Architecture 1.22
8 Component-based architecture 1.19

Table 6 – Standard Deviation - SQ2

Figure 13 – Survey - Architectural rules on distributed teams

Figure 14 presents the answer consolidation related to question SQ03 as described in
Appendix C, it’s also possible to see the standard deviation from each answer on Table 7.



55

When asked if a lack of skills negatively impacts team communication, around 53% said they
agree or strongly agree. When asked about lack of trust, around 85% of the interviewees
said they agree or strongly agree that it negatively impacts team communication. Regarding
the impact of language limitation on team communication, about 78% said they agree or
intensely that it has a harmful impact. Around 62% said they agree or strongly agree that
not being aware of cultural differences damages team communication. According to 87% of
our interviewees, poor communication negatively impacts team communication. 66% of our
respondents said poor documentation is bad for team communication. Moreover, 44% said
that rare face-to-face interaction is unsuitable for team communication.

Practice Standard Deviation
1 Lack of skills 1.18
2 Lack of trust 1.18
3 Language limitation 1.10
4 Not being aware of cultural differences 0.98
5 Poor communication 0.98
6 Poor documentation 1.09
7 Rare face-to-face interaction 0.90

Table 7 – Standard Deviation - SQ3

Figure 14 – Survey - Aspect impact over communication



56

Figure 15 presents the answer consolidation related to questions SQ04 to SQ17 as described
in Appendix C, it’s also possible to see the standard deviation from each answer on Table 8.
In question SQ04, 81% of our respondents said they partially or agreed with the statement. In
SQ05, 56% of our respondents said they partially or agreed with the statement. In question
SQ06, around 40% of our respondents said they partially or agreed with the statement. When
presented with the statement in SQ07, 47% of our respondents said they partially or agreed
with it. In question, SQ08, around 44% of our respondents partially agreed or agreed with the
statement. When presented with the SQ09 statement, around 38% of our interviewees said they
partially agreed or agreed. In the statement, SQ10, around 69% said they partially agreed or
agreed with it. In question SQ11, 56% of our respondents said they partially agreed or agreed
with the declaration. In question SQ12, 87% of our respondents said they partially agreed
or agreed with our affirmation. When asked the respondents’ opinion about question SQ13,
around 69% said they partially agreed or agreed. In question SQ14, almost every respondent
said they partially agreed or agreed with the statement, representing around 94% and 6%
answered they did not know how to answer. When presenting question SQ15, around 84%
said they partially agreed or agreed with the affirmation. Regarding question, SQ16, 43% of
our interviewees said they partially agreed or agreed with the statement. Moreover, 84% of
our interviewees said they partially agreed or agreed with the statement presented in SQ17,
and just 16% said they did not know how to answer.

Question Standard Deviation
1 SQ04 0.95
2 SQ05 0.91
3 SQ06 1.04
4 SQ07 0.72
5 SQ08 0.88
6 SQ09 1.04
7 SQ10 0.99
8 SQ11 1.01
9 SQ12 0.59

10 SQ13 1.02
11 SQ14 0.61
12 SQ15 0.88
13 SQ16 0.97
14 SQ17 0.69

Table 8 – Standard Deviation - SQ4 to SQ17



57

Figure 15 – Survey - Software Architecture over distributed teams communication

4.2.2 Interviews

In this section, we will present the results obtained from the interviews. When referencing
the respondents, we will adopt the codes defined in Table 3 to identify them.

Based on the respondents’ statements, we identified some practices related to software
architecture (CAT1) that can enable communication: (CAT1.1) standards definition, (CAT1.2)
adopting archetypes, (CAT1.3) decoupled architectures, (CAT1.4) teams independency, and
(CAT1.5) guidelines.

Regarding the standard definition (CAT1.1), adopting it since the beginning of the project,
along with the definition of which best practices the team should follow, can help to reduce
misunderstandings (see quote EB-3 and EC-8) and create a base knowledge (see quote EC-10).
Furthermore, adopting these standards can make adding them to a project easier (see quote
EC-9). However, even with these standards and best practices described, they will still have
their own opinion but with a defined base direction (see quote EB-1). The consequence of not
having any standards is getting uncoordinated teams where everyone creates their standards
(see quote EC-12).



58

• EB-3: “Having common standards and best practices will not avoid misunderstandings.
It will reduce it from the beginning, at least because everybody understands the same
things about how to present solutions.”

• EB-1: “But then everybody will have a different opinion. The important thing is that
everybody shares the fundamental approach to do things, so when building a solution,
everybody thinks about the same things, performance, reliability, all those things.”

• EC-8: “As much standard is the technologies, you can avoid miscommunication because
you are using standard globally familiar.”

• EC-9: “Patterns which define the interface, the communication channel. The more de-
fined the standards, and the easier it will be to add them to the projects.”

• EC-10: “At the organization level, depending on the type of application that you have
to build, should have architectural standards. For instance, creating a web application
with a backend that will use Java. Establishing good practices, archetypes, or anything
else that favors the creation process in any team, they will know what to do.”

• EC-12: “Twelve development teams where everyone does what they want without any
processed defined, every one defined its architecture.”

Although adopting practices (CAT1.1) can help to mitigate communication problems, just
having it by itself will not avoid misunderstandings (see quote EB-10); sometimes, it needs
to be complemented by other strategies like documentation (see quote EB-11). However,
documenting every piece of information is not viable. It can be considered a bad practice, but
document the basic information related to requirements, solution specification, and how the
solution is built (see quote EB-12).

• EB-10: “So you need the rules and the standards and the approaches common for
everybody. But even having that, you could get to different solutions, and you can
maybe misunderstand requirements.”

• EB-11: “You follow your practices, your rules, your tools, your templates, and on top of
that, you document things.”



59

• EB-12: “So it always helps to document everything bad, not doing too much documen-
tation, not saying this, but the basic things, right, the requirements, the solution, and
the why did you come up with that with the solution.”

In addition, participants mentioned that adopting archetypes (CAT1.2) helps to avoid
misunderstanding (see quote ED-1) and can improve the maintainability of systems because
you are going to have base code generation (see quote ED-2), which helps the support team
to maintain it.

• ED-1: “I think these patterns help; for instance, we use maven archetypes.”

• ED-2: “Today, we use archetypes to generate more than ten applications, consumers of
Kafka messages. Imagine if we did not have this archetype to generate these applications,
everyone would create their application with a different structure, and it would be more
difficult for the support team to maintain it.”

Another practice mentioned was decoupled architectures (CAT1.3). This type of architec-
ture can generate more independency between teams (CAT1.4) and become easier to manage
these teams (see quote EC-1). Although this architecture can ease management, it can gen-
erate knowledge silos (see quote EA-1). Moreover, adopting decoupled architecture like mi-
croservices or event-driven can also bring common understanding because, in the end, they are
standards used globally (see quote EC-6, EC-7, and EC-15). It also brings the benefits where
the risks are isolated; if any part of an application stops working, the impact is negligible
because the structure is decoupled (see quote EA-18). Even with these complexities and ben-
efits, the concerns about communication problems will vary based on application complexity
architecture-wise (see quotes EA-4 and EA-8).

• EA-1: “Having distributed teams, especially if the architecture is, you know, or microser-
vices architecture which suggests that you have a good level of decoupling. Furthermore,
that sometimes creates silos, and this is where the communication or collaboration prob-
lem might occur.”

• EC-6: “Use a microservice architecture where established the interfaces and the interac-
tions between different microservices. The market will always use a standard architecture
that is easily understandable.”



60

• EC-7: “It does not matter if you are working from Brazil, China, or Argentina, everybody
is going to know what it is a REST service or what it is an API REST or even when we
have a messaging system, where receives events and react to them.”

• EC-15: “We create the microservices with integration layer with other systems, using
Kafka and API REST. If we have newcomers, we have defined standards and a clear
direction.”

• EA-18: “It really depends on the complexity, the overall complexity of the product they
have to deal with. When it comes to architecture, if things are really decoupled in your
architecture, be it event-driven architecture or just microservices architecture where just
a lot of orchestration is happening, and people are calling your services. The impact of
doing something work is smaller because the structure is decoupled.”

• EA-4: “If you are still doing something relatively simple, right? But, at a point when
you tackle something more serious, more complex, these challenges will start popping up
with, you know, coming from the differences of, in the culture and expectations mainly.”

• EA-8: “If the product itself is relatively simple, architecture-wise, in my opinion, the
problem is not that big.”

Although some respondents believe that adopting microservice can improve communication
because of team independence (see quote EC-1), it can also be problematic when you need
these independent teams to communicate between them (see quote ED-3) and also consider
that you have to manage different cultures (see quote EC-5).

• EC-1: “Having loosely coupled architectures because it supports teams to work more
independently. Becoming easier to manage these teams, does not matter where they
are, because their work is more independent.”

• ED-3: “So I believe that inside of a single service, the communication can have a good
flow, but when different teams develop the microservices, and they need to communicate,
it can be a problem.”

• EC-5: “I believe that you will have to put more effort into coordinating the teams to
keep the different teams aligned. Managing these differences will not always be easy
when we have different cultures. Contrariwise, it is more difficult, and we must dedicate
more time.”



61

Guidelines (CAT1.5) is another category identified during the analysis. Even more, it is
essential to have some guidelines when the company is not an IT company (see quote EA-13)
and can be used to coordinate between teams working on different products (see quotes EA-12
and EA-11).

• EA-12: “I think having guidance architectural uh guidelines and um embracing that to
the team or even on a higher level, if you are leading, let us say, a department, right?
And you have multiple teams who are working on different products, not even connected
products to each other.”

• EA-11: “Where you have ten teams working on ten products, and they all are dis-
tributed. So having guidelines, the development guidelines and architectural guidelines
is absolutely required to and in an ideal world that would be sufficient.”

• EA-13: “Especially in the companies that are not, you know, pure IT companies, pure
companies that are the main thing of which is to create the software as a service or sell
software or services uh digital services companies.”

Communication Practices (CAT2) - Another group of categories identified based on re-
spondents’ statements was the communication practices communication practices where we
have five sub-categories: (CAT2.1) communication facilitator, (CAT2.2) face-to-face meet-
ings, (CAT2.3) less-interaction, (CAT2.4) agile ceremonies and management frameworks, and
(CAT 2.5) alignment meetings

Regarding the communication facilitator (CAT2.1), having a person playing a senior role
in the team, like an architect or a senior engineer, who works as a facilitator between the
distributed teams, could help mitigate and keep the teams connected (see quote EA-2, EC-11,
and EA-10).

• EA-2: “I think the key role of architects and more senior engineers, in that case, is to
ensure that the teams are staying connected and this high-level understanding of how
things are connected.”

• EC-11: “An architect at the organization level who manages the integration between the
teams and the standards.”

• EA-10: “If the team feels that they are not there and this collaboration gap exists, or
communication gap exists, or creative ideas are not coming up or surfacing up, then I



62

think it is a responsibility of senior staff, senior engineers, and maybe lead engineers,
architects.”

When talking about face-to-face meetings (CAT2.2), having at least a single meeting to
know each other face-to-face can help to mitigate possible problems and build trust between
team members (see quote ED-5), and the integration between team members becomes easier
(see quote ED-6). Sometimes, the consequences of a lousy communication flow are blocked in
a daily task (see quote ED-7). Moreover, a lack of communication or synchronization between
team members can cause duplicate work (see quote EB-2).

• ED-5: “If you know the person face-to-face, you will have a better communication flow
and openness to talk.”

• ED-6: “At least, I believe you will have open communication when the people know each
other in person. The integration will become easier.”

• ED-7: “Some problems communicating with another team, with private messages in Mi-
crosoft Teams or even emails, but did not get any answer. Ultimately, this communication
problem blocked my task.”

• EB-2: “important is to often meet with the people and, and always try to be the other
what you are working on because sometimes, as you are in different locations, you might
be working on similar problems and maybe you are two people building a similar solution
for a similar problem.”

Regarding less interaction between teams (CAT2.3), it can allow fewer errors when adopting
a decoupled architecture, and the teams work in a different workflow, which does not require
constant communication (see quote EC-4). Although fewer errors can be achieved with these
practices, they can also generate knowledge silos, as presented in independency between teams
(CAT1.3).

• EC-4: “Obviously, the interaction between different workflows will have less interaction.
The less interaction allows fewer errors and fewer misunderstandings in general.”

Agile ceremonies and management frameworks (CAT2.4) can help spread knowledge and
build a shared understanding between team members (see quote ED-4). Sometimes, adopting



63

these ceremonies is impossible because of team distribution and lack of timezone overlap (see
quote EC-14).

• ED-4: “Clarify the requirements, for instance, adopting refinement meetings, estimation
and planning meetings, and OKR frameworks. Furthermore, preserve these meetings to
maintain the requirements updated and clear to everyone.”

• EC-14: “At some point, we had one hour to do every ceremony because of the timezone;
it was the only common hour between the teams.”

Regarding alignment meetings (CAT2.5), it can be leveraged to mitigate communication
problems. There are meetings like check-in meetings (see quote EB-4), feedback meetings (see
quotes EB-13, EB-15), or even requirement refinement (see quote EB-14). Although having
alignment meetings could help to improve communication, not having some direction in what
practices must adopt and which standards to follow can drive complete confusion about where
to establish their standards (see quote EC-13). Feedback is a crucial factor when talking about
communication in distributed teams (see quotes EB-7 and EB-5); it also can be used as a
knowledge-sharing mechanism (see quotes EB-16 and EB-9) and consequently help to build a
reliable and open environment (see quotes EB-9 and EA-7).

• EB-4: “If you have the team spread across different locations, it always helps us to get
periodic check-ins with the teams.”

• EB-13: “But then on top of that, you will have meetings to uh hear from all the other
people.”

• EB-14: “Whenever there is a requirement that comes from business, usually it, it comes
to the business analyst, and then the business analyst sits with me in this case, and then
I kind of decide whether this needs architectural design behind or not.”

• EB-15: “Draft of the proposal. And then what I do is I go to the development team,
and usually I invite the whole development team and not just develop the, develop the
lead here. And I propose a solution.”

• EC-13: “It does not matter if you have aligning meetings; in the end, everyone does
what they want.”



64

• EB-5: “Somebody comes up with a solution, and then you present it to the group of
architects, and everybody gives feedback, and then this works in different locations.”

• EB-7: “It is good to put everything written, right? Because, again, talking, you can have
misunderstandings. But then if everybody, everything is written and everybody reads it
and then comes back with feedback, then you will uh reduce these misunderstandings.”

• EB-16: “I send it beforehand the meeting so they can have a look and come up with
questions to the meeting. And then in this meeting, I do the presentation, and then I
open for Q&A, and then everybody has ideas.”

• EB-9: “So these are my the requirements I got, and people ask questions, I do not
understand this, I do not understand this. And then maybe you need to get together with
the owner of the requirements to have some sessions, some it relations until everybody
is on the same page, right? And then once the -requirements are clear, then you go to
the solution and then for the solution there.”

• EA-7: “Be kind on listening what others have to say in terms of, what is not working,
what can be done better, and so forth, and make it transparent for the team.”

Cultural aspects (CAT3) is another category identified while analyzing our interviewees’ an-
swers. It is going to be presented in three sub-categories: (CAT3.1) learning culture, (CAT3.2)
transparency, and (CAT3.3) commitment.

Regarding learning culture (CAT3.1), it is complex to manage but necessary to spread
knowledge when adopting complex architectures, even more, when the team has different
seniority levels, so it is necessary to develop a learning culture (see quote EA-9). How each
person handles and absolves knowledge will vary based on each background (see quote EA-
26), some individuals do not have the necessity to understand the basics behind frameworks,
architecture (see quote EA-20), or tools used in the development process (see quote EA-25)
and to have a quality product the foundation needs to be comprehended (see quote EA-23).
Moreover, the learning culture is essential to build a shared understanding (see quote EA-19),
and one of the challenging parts is to create this culture in the newcomers (see quote EA-6)
apart from the cases where the architecture complexity becomes challenging to keep up the
level of understanding (see quote EA-20).



65

• EA-9: “If the topics are complex and you have different teams with different cultures,
with different seniority levels, this is, of course, affects overall, let us say, effectiveness
and performance, and to tackle that, I think it is about, it is about creating a proper
learning culture in the team.”

• EA-26: “In different countries, it might be different, depending on the university, de-
pending on the environment.”

• EA-25: “High-level abstractions more and more, and they are being used in the modern
architectures because we try to be as efficient as possible, bringing in all those cool
frameworks that are out there that are hiding a lot of complexity and, and modern
uh modern young generation of engineers. They do not bother themselves to really
understand how certain things are done and how certain patterns are being implemented.
And this is some, especially depending on the culture as well.”

• EA-23: “It always starts from really basics in the foundation. It is like humans are trying
to learn how to walk first, and then they do the rest.”

• EA-20: “Architecture is just more complex topic because, you know, for some people,
very distributed systems with a lot of services and a lot of teams involved. It might be
really challenging to keep this high-level understanding in the head.”

• EA-19: “In order to mitigate communication problems again, when it comes to archi-
tecture, how the product is done is to make sure that everybody who is participating in
that collaboration and communication is ramped up, they understand the basics.”

• EA-6: “Everybody who is coming to that team coming originally from totally different
background, they have to buy it in, and that is the difficult part, architecture.”

Transparency (CAT3.2) is also related to two other essential points: knowledge manage-
ment and openness culture. To overcome the challenges generated by distributed teams, the
team needs to have a way to be fully transparent about the reason for doing something (see
quotes EB-8, EB-6, and EA-22) and have this information flowing; it is essential to keep every
person in the same understanding level (see quotes EA-21 and EA-24).

• EB-8: “There is no way to remove them completely, but you will really reduce them if
you have all the decisions, documented the requirements, clearly documented, and you
share these documents.”



66

• EA-24: “Full transparency of why it is like that and um and the culture of being open
for, for listening back uh what can be improved. It is universal, to all architectures,
maybe with some small differences. But in essence, it does not really matter what kind
of architecture you have.”

• EA-21: “Another problem is why architectures, in general, might be challenging for dis-
tributed teams to communicate simply because insufficient information flows effectively.
But that also means that I feel like putting myself in the shoes of an engineer and
software developer programmer is that before jumping on the task, that is, to imple-
ment a certain thing in whatever the ecosystem is being highly distributed, event-driven,
whatever is that I understand what I am doing.”

• EB-6: “Record these decisions in, for instance, architectural records where you can say
for this problem, we have decided this and this and this and these, the rationale behind
these answers. And with that, you bring clarity for everybody, and also you document
your decisions.”

• EA-22: “challenge definitely will be their silos not enough information flowing, but I
think in order to overcome it, we need to again, work on basics, works on foundation,
mature the teams a little bit, make sure engineers are comfortable asking questions and
then it is up to whoever is sharing information and whoever is receiving to ensure that
that this information that is being shared is enough.”

Commitment (CAT3.3) is also considered by the respondents because even though the
guidelines are defined, it does not mean that they will adopt them. Commitment is necessary
for team members to adopt these guidelines (see quote EA-14).

• EA-14: “If those architectural guidelines, are defined, it does not mean they will be used.
It is really difficult to embrace them because everyone has their own opinion and can
justify things that we cannot do that because we do not have time or skills or whatever
and practice. I think it requires a bit more than just having architectural guidelines.”

Although some respondents may say that architecture can be a critical factor in a dis-
tributed environment, others say that, in some situations, it is better to give more attention
to building trust over defining architectural principles (see quotes EA-5, EA-16, and EA-17)
and understanding the capabilities inside the team (see quote EA-15).



67

• EA-5: “I think it is not that much about, you know, architectural principles. It is exactly
about building trust, um repeating things uh uh If necessary, making sure that everybody
is on the same page, um double checking that time to time.”

• EA-15: “The first thing to start is to assess the team and understand the skills.”

• EA-16: “Practices we are using when it comes to development practice, maybe we
are really struggling, predicting how much time certain things will take because we are
showing we are not trusting each other and then, can be the thing um because it reduces
the pressure of committing for a certain scope for two weeks, then we see how things
are done.”

• EA-17: “When the team believes that it is ok, we gain a little bit of knowledge and trust
for each other. We can switch to Scrum and make sure that as a team, we can commit
to a scope, same with architectural principles.”

4.3 CLOSING REMARKS

In summary, this chapter’s results underscore the potency of the integrated approach that
melds systematic mapping with a case study. The systematic mapping unveiled the broader
landscape of existing research, elucidating prevailing trends and revealing gaps in our un-
derstanding. The subsequent case study, enriched by interviews and a comprehensive survey,
offered a focused exploration of a specific context, breathing life into the quantitative insights
with qualitative narratives. These methodologies not only validated our findings but also af-
forded a holistic perspective that transcends the limitations of individual methods. As we move
forward, the insights gleaned from this chapter not only contribute to the academic discourse
but also offer practical implications for our research domain. We continue to discuss the results
in the following chapter.



68

5 DISCUSSION

As we focus on the discussion chapter, we step into the heart of our research journey, poised
to interpret the multi-dimensional insights we’ve amassed. Drawing from the rich wellspring
of systematic mapping and case study results (Chapter 4), we explore our research domain’s
contours comprehensively. This chapter serves as an intellectual crucible where the empirical
findings merge with theoretical underpinnings, offering a nuanced perspective on the themes
and patterns that have come to light. We scrutinize the implications of our systematic map-
ping’s revealed trends through a critical lens, identify gaps that warrant further exploration,
and delve into the resonant narratives from the case study’s interviews and survey responses.
In addition to this analysis, the chapter also serves as a repository of lessons learned — a testa-
ment to the methodological synergy harnessed, the challenges surmounted, and the garnered
throughout this scholarly. As we navigate through the pages of this chapter, we synthesize
our findings with academic discourse, spotlighting novel insights, potential avenues for future
research, and the broader implications our study extends to theory and practice.

5.1 SYSTEMATIC MAPPING

In the following, we will discuss our study’s results, highlight the main findings, and relate
them to our research questions. The outcomes of this section will be hypotheses extracted
based on the results, which will drive our subsequent studies.

5.1.1 How software architecture design impacts the DSD environment?

Alzoubi and Gill [SM13] bring to our attention that the Agile Enterprise Architecture
(AEA) (HERBSLEB; MOITRA, 2015) uses a standard information model that can enable clear
communication in distributed teams. This model can generate a common language between
the development groups and improve communication because system and software structure
definitions are needed. Adopting a component-based strategy to build an application using
component interfaces or contracts can enhance communication by reducing communication
overhead.

Although adopting modular architecture may reduce communication overhead and lessen



69

misunderstanding during the development process, some authors point out that this approach
can generate other challenges related to poor communication and sometimes provokes team
isolation (BANO; ZOWGHI; SARKISSIAN, 2016). Moreover, a mature architecture is essential to
simplify transparent task distribution (NOLL; BEECHAM; RICHARDSON, 2011).

Sievi-Korte [SM10] highlights that API is a crucial architecting practice to define prod-
uct boundaries and handle modules’ limits. Component-based and APIs (JACOBSON; BRAIL;

WOODS, 2012) strategies are examples of interface-driven design. They also follow less type
interdependencies and loosely coupled principles, which, according to Sauer [SM09], is a com-
munication enabler on distributed projects. Tekinerdogan et al. [SM08] also point out that the
loosely coupled principle is the most acceptable practice when architecting software.

Still, about the impact of software architecture and communication in DSD teams, Mishra
and Mishra [SM07] and van Vliet (VLIET, 2008) affirms that software architecture can be used
to reduce the need for communication in a multi-site development project. Moreover, it is
possible to use the architectural structure of the system to split work between sites, which
indicates a variation of Conway’s law (CONWAY, 1968).

Microservices is an example of an architectural style that applies both type interdepen-
dency and loosely coupled tenets. It has become widely adopted (FRANCESCO; LAGO; MALA-

VOLTA, 2018), and some authors consider it reasonable to follow Conway’s law (BALALAIE;

HEYDARNOORI; JAMSHIDI, 2014). Lenarduzzi and Sievi-Korte [SM06] bring to our attention
that adopting microservices has some pitfalls, even more related to communication, making
the teams rely on software architects to coordinate. However, having this coordinator role in
an environment has pros, like a single point of contact to manage problems, and cons, like
decreasing visibility or making the team non-democratic.

Crnkovic (CRNKOVIC, 2001) define software component as: “[...] a composition unit with
only a contractually specified interface and explicit context dependencies. A software compo-
nent can be deployed independently and is subject to composition by third parts.”

But what is the relationship between software component independency level (or coupling
level) and software design quality? Page-jones (PAGE-JONES, 1988) affirms that: “The first
way of measuring design quality [...] is coupling, the degree of interdependence between two
modules. Our objective is to minimize coupling; that is, to make modules as independent
as possible.” This affirmation drives us to believe that the software architecture quality is
a consequence of how the software modules communicate between them. Meanwhile, Sauer
[SM09] and Bosch and Bosch-Sijtsema (BOSCH; BOSCH-SIJTSEMA, 2010) observe that adopting



70

loosely-coupled components design is critical to mitigate communication problems in DSD
environments.

These findings suggest that adopting a loosely coupled software design strategy can mit-
igate communication challenges in DSD environments. Based on this, we built our first sup-
position:

SP1 Decoupled software architectures are communication enablers and can help to

mitigate communication challenges in DSD environments.

5.1.2 Is there any architectural design that can positively impact the DSD envi-

ronment?

According to Alzoubi and Gill [SM13], the Agile Enterprise Architecture (AEA) can be used
as an integrated shared view to help achieve the best design and architecture. Ovaska et al.
(OVASKA; ROSSI; MARTTIIN, 2003) also support using AEA as an integrated shared view. When
talking about performance on DSD teams, Alzoubi and Gill [SM13] show the contrast between
adopting AEA and using EA, where no value is delivered, which the AEA definition supports
(EDWARDS, 2006). However, Alzoubi et al. [SM12] indicate how AEA affects DSD teams still
needs clarification. Although AEA’s impact is unclear, Kornstädt and Sauer [SM05] and some
authors (FARIA; ADLER, 2006; HERBSLEB; GRINTER, 1999) highlight adopting architecture-based
development brings advantages to the DSD environment, including the coordination and task
allocation.

Urrego et al.[SM01] and Kornstädt and Sauer[SM04] bring concerns about the distances
between teams and significant communication gaps, which sooner or later will lead to mis-
communication, causing a lack of trust and issues related to issuing the resolution. These
problems bring even more apprehension, mainly to projects with complex applications. To
mitigate these communication challenges, Kornstädt and Sauer [SM04] and Gill and Alzoubi
[SM11] recommend adopting practices that enable daily communication between team mem-
bers and feedback loops. These recommendations indicate that following some agile rules, for
instance, from Extreme Programming (BECK, 2001), Scrum (SCHWABER; SUTHERLAND, 2011),
and DevOps (EBERT et al., 2016), may help to mitigate communication challenges which some
authors also support (HOLMSTRÖM et al., 2006; JAIN; SUMAN, 2016; VALLON et al., 2018).

We found two perspectives when discussing architectural knowledge and knowledge man-



71

agement in global software development. The first one is the impact of architectural expertise
on the performance of distributed teams. Clerc [SM02] indicates that the teams use the ob-
tained knowledge regarding architecture knowledge to make decisions, but distributed teams
do not accept it, which is supported by some authors (ALI; BEECHAM; MISTRIK, 2010; CLERC;

LAGO; VLIET, 2009). The second one is knowledge management in general and its impact on
communication challenges. Clerc et al. [SM03] indicate different practical strategies to spread
knowledge through an organization and present two use cases where these practices had a real
impact.

These findings suggest adopting agile practices combined with an architectural design
focused on architecture as a decision-making process in DSD environments can help to mitigate
communication challenges. Based on this, we built our second supposition:

SP2 An Architectural Design which enables agile practices and follows architectural-

centric principles can help to coordinate DSD teams and mitigate communi-

cation challenges

5.2 CASE STUDY

In this section, we will discuss the results obtained from our case study and compare them
with the outcomes from the first step of this work, the systematic literature mapping. To facil-
itate understanding, the findings of this work are categorized into three different perspectives,
architecture-wise, communication, and cultural aspects. The following sections present each
one of these perspectives.

5.2.1 Architecture

During our investigation, we identified aspects of software architecture from different per-
spectives, including coding standards, adopting archetypes, decoupled architectures’ impact
on communication and team organization, team independency, and development guidelines.



72

5.2.1.1 Coding standards

The interviewees point out that having coding standards will reduce misunderstanding
from the beginning of the project (see quote EB-3), and it can also avoid miscommuni-
cation by adopting standards known globally (see quote EC-8). ISO/IEC/IEEE 12207:2017
(ISO/IEC/IEEE. . . , 2017) considers coding standards to be guidelines which can mean that fol-
lowing them can avoid other coding quality issues and improve maintainability and readability.
Holmström et al. (HOLMSTRÖM et al., 2006) shows that large companies like Intel and HP have
adopted coding standards at the organization level combined with agile practices. Moreover,
Kircher et al. (KIRCHER et al., 2001) show that applying coding standards does not require a co-
located team. The SOLID principles can be considered coding standards and a recommended
practice to mitigate communication problems [SM12].

Multiple patterns can be adopted as coding standards, and having them defined, depending
on the level of detail it has, will be easier to add them to projects (see quote EC-9); having this
base understanding of what is fundamental to the project and which knowledges are necessary
to build a solution is essential in the development process (see quote EB-1). Of course, the
standards will depend on the type of application the team is building (see quote EC-10). The
development process can become distressful if no method is defined and each team starts to
create their approach (see quote EC-12).

Moreover, in SQ01 at SQ01A02, of the survey, where we asked about adopting coding
standards, around 90% of our respondents said they always use or often use it, with no one
declaring that they never use it. These answers had a standard deviation of 0.76 which means
that the answers were close to the mean answer in this case.

5.2.1.2 Adopting archetypes

During the interviews, interviewees came up with a concept not raised during our systematic
mapping, where adopting it could create a common starting point for every team. Following
archetypes, like maven archetype (MA; LIU, 2020; VARANASI et al., 2014), would help to mitigate
communication problems and divergencies when following organization standards (see quotes
ED-1 and ED-2).



73

5.2.1.3 Decoupled Architecture

During the interviews, respondents indicated that decoupled architectures might generate
more independence between teams (see quote EC-1), reducing the necessity for inter-team
coordination [SM07, SM13]. Furthermore, decoupling architectures are suitable to mitigate
risks; if any part of the application stops working, its impact is limited because of the structure
decoupling (see quote EA-18).

Another benefit of adopting this type of architecture is that it is widely known and ac-
cepted by different organizations. This can ease the understanding process and establish a base
knowledge between team members (see quotes EC-6, EC-7, and EC-15). It is also essential
to consider that decoupled components constitute the most acceptable practices of software
architecture strategy [SM08], or even more, adopting an API that can help to define modules
and product boundaries [SM10], following a more separate structure of components is more
likely that organization will be to develop them successfully on multiple sites [SM09] and there-
fore following Conway’s law (CONWAY, 1968). Although there are many benefits from applying
decoupled architectures, there are also some pitfalls, for instance, whether the structure is
decoupling sufficiently or not (SIEVI-KORTE; RICHARDSON; BEECHAM, 2019) and may originate
knowledge silos (see quote EA-1).

Some interviews said it is unnecessary to establish architectural practices when the system
has a less complex structure architecture-wise; otherwise, tackling it may be necessary (see
quotes EA-4 and EA-8). Furthermore, in complex structures like microservices, it becomes
essential to have a good alignment and communication flowing between teams (see quote
EA-3), and it may be necessary to have someone coordinating this communication (see quote
EC-5).

Moreover, during our survey, we asked the respondents what they thought about the
software architecture’s impact on distributed teams. In our SQ04, we asked them if they
believe software architecture can positively impact software development teams in a distributed
environment, where 81% said they agree or strongly agree with the statement. It only indicates
that architecture may impact communication from our interviewees’ perspective, yet we need
to clarify which type of architecture.

In SQ05, we asked if they believed that adopting microservices or micro-frontends can help
improve communication between team members in multiple locations; 56% of our respondents
agreed or strongly agreed, 16% disagreed at some level, and the other 28% were considered not



74

willing to give their opinion or did not know how to answer. These answers may indicate that
one type of architecture that can improve communication would be decoupled architectures,
like microservices or micro frontends.

In SQ06, we kept asking their perspective about other architectural patterns that may also
impact communication in software development, and we asked: “Event-driven architecture
can help improve communication between team members in multiple locations”; around 40%
of our respondents said they agreed or partially agreed with it. Event-driven architecture is
another architecture that helps improve communication in distributed software development
environments. In SQ07, we asked the interviewees’ opinion: "Component-based can help im-
prove communication between team members in various places." in this case, 47% said they
agreed or partially agreed with it. In these two questions, around 50% of the respondents
were unwilling to give their opinions or did not know how to answer. Both approaches are
considered decoupled architecture and may help improve communication in a distributed en-
vironment. However, clarifications are necessary to understand the pitfalls of adopting these
architectures and whether respondents agreeing with it could have been higher.

In SQ08, the statement has more relation with a philosophy that may impact the architec-
ture development rather than architecture itself. The affirmation is: “Domain-Driven Design
can help improve the communication between team members on numerous sites.”; 44% of the
respondents said they agreed or partially agreed with this statement, while 50% did not know
how to answer or were unwilling to give their opinion, and 6% disagreed or partially disagreed.
It may indicate that the interviewees think philosophies can also contribute to mitigating
communication problems in distributed software development.

Although the findings from SQ06 and SQ07 may indicate that software architecture adopt-
ing a decoupled structure may help to mitigate communication problems, in SQ09, the state-
ment was “a decoupled component is a solution to mitigate communicate challenges”; and the
answers were balanced, 38% agreed totally or partially, while 31% did not know how to answers
or were unwilling to give their opinion and 31% disagree totally or partially. These answers do
not help to make any conclusions about the statement related to decoupled components.

In SQ10 and SQ11, the objective was to understand the respondents’ perspectives on
decoupled components. The SQ10 and SQ11 were “Microservices generate decoupled compo-
nents” and “Having decoupled components architecture reduces the necessity for inter-team
communication.”; and their answers in SQ10 were 69% agreed totally or partially, while 19%
did not know how to answer or were unwilling to give their opinion, and 12% disagreed to-



75

tally or partially; their answers in SQ11 were 56% agreed totally or partially, while 28% did
not know how to answer or were unwilling to give their opinion and 16% disagreed totally or
partially. It may indicate that microservices architecture reduces the necessity for inter-team
communication.

In questions SQ13 and SQ15, the objective was to get the respondents’ point of view
about microservices and APIs and their relation with each other. In SQ13, the statement was,
“Microservices can provide a better component overview and enable less coupling between
applications.”; and the answers were 69% agreed partially or totally, while 22% were unwilling
to give their opinion or did not know how to answer, and 9% partially or totally disagreed. In
SQ15, the statement was, “Using APIs generates less interdependency between components
and enables microservices.”; and the answers were 84% agreed partially or totally, while 10%
were unwilling to give their opinion or did not know how to answer, and 6% disagreed partially
or totally. It may indicate that combining these practices, microservices and APIs, helps create
a less-dependent environment and a better structure overview.

5.2.1.4 Team independency

Regarding team independence, our findings indicate that it is connected with the coupling
level adopted by the software architecture being built. Having loosely coupled architectures
supports teams in working more independently, making it easier to manage these teams re-
gardless of location (see quote EC-1). Although it has some drawbacks [SM06]; for instance,
it may generate knowledge silos, and more challenging to have effective coordination between
teams (see quotes EC-3 and EC-5).

5.2.1.5 Guidelines

During our study case, another practice that came up was the adoption of guidelines
during the software development process. Guidelines are essential at the department or com-
pany level (see quote EA-12), especially when it is not a pure IT company (see quote EA-
13). These guidelines can be architecture-wise or development and are required in an ideal
world (see quote EA-11). Having commonly acknowledged guidelines also affects modular-
ity and change management, ultimately impacting the design decision process (SIEVI-KORTE;

BEECHAM; RICHARDSON, 2019).



76

5.2.2 Communication

Other aspects discovered during this research were related to communication. In the fol-
lowing sections, we are going to discuss five categories related to communication: communica-
tion facilitator, face-to-face meetings, less interaction, and agile ceremonies and management
frameworks.

5.2.2.1 Communication Facilitator

A communication facilitator is essential to keep teams connected and a high level of
understanding; Someone with a good seniority level, like an engineer or architect, can perform
this role (see quote EA-2), avoid communication gaps, and keep creativity at a reasonable
level its also on the scope of their responsibility (see quote EA-10). The architect at the
organizational level manages team integration and defines common standards (see quote EC-
11).

There are multiple communication structures that an organization can adopt; nevertheless,
these structures have pros and cons. Suppose the structure adopted is a one-level hierarchy,
where one person manages the problems and will be the only one responsible for those de-
cisions. In that case, it may create a non-democratic environment and requires a good level
of expertise by the manager. There is an intermediate structure called a two-level hierarchy,
where the approach is to follow a decision-making chain, and every microservice has a co-
ordinator; however, it may generate synchronization problems in the communication between
coordinators. An environment with a complete democratic focus is also possible, decreasing
the possibility of team members’ exclusion in the decision process, but the discussion may take
longer. [SM06].

Sometimes, having a developer perform the facilitator role is also possible (RÄTY et al.,
2013). Although, in most cases, a person performs the facilitator role, adopting an ontology
can also establish a common vocabulary and help avoid communication misunderstandings
(ARANDA; VIZCAÍNO; PIATTINI, 2010).



77

5.2.2.2 Face-to-face meetings

Face-to-face meetings are only sometimes possible in distributed environments because
geographical distance decreases these opportunities [SM11]; the lack of face-to-face meetings
may affect communication among distributed team members or cause misunderstandings in
design (KHAN; BASRI; DOMINC, 2014; JAN et al., 2016).

Having a single meeting to know each other face-to-face can help to mitigate possible
problems and build trust between team members (see quote ED-5), and the integration between
team members becomes easier (see quote ED-6). Sometimes, the consequences of the lousy
communication flow are blocked in daily tasks, or a lack of communication or synchronization
between teams may cause duplicated work (see quotes ED-7 and EB-2).

During our study case, in SQ03, we asked our interviewees their opinion about whether
some aspects negatively impacted team communication. Rare face-to-face interaction got 44%
of answers saying agree or strongly agree about it, while getting 40% neither agree nor disagree,
and 16% disagreed or strongly disagreed about it. These results converge to the same results
found during the other phases of this study.

5.2.2.3 Less team interaction

When referencing less interaction between teams, adopting decoupled architecture may
reduce the necessity of communication in a multi-site project, reducing inter-team commu-
nication [SM07]; this is more perceptible when teams work in different workflows (see quote
EC-4). However, some authors affirm that it is necessary to have inter-team coordination to
align modifications in the service interface or to keep integration (ILYAS; KHAN, 2017; ILYAS;

KHAN, 2015; SIEVI-KORTE; BEECHAM; RICHARDSON, 2019).
Although decreasing the amount of communication may appear to improve the misunder-

standings in multi-site teams, it also comes with drawbacks, like creating knowledge silos (see
quote EA-1).

5.2.2.4 Agile ceremonies and management frameworks

Agile ceremonies can help to spread knowledge through distributed teams and establish a
common understanding between them (see quote ED-4). Practices like pair programming or



78

daily standups are used in different companies to avoid communication problems by having
frequent communication [SM04]. It is also necessary to have the business people and developers
constantly communicating [SM11].

However, applying these practices is only possible in some situations because of team
distribution and lack of timezone overlap (see quote EC-14). There are some strategies to
overcome problems related to overlap working hours, like trying to increase the overlap working
hours, reducing the meeting length, and choosing remote sites in the same or proximate time
zones (SHRIVASTAVA; DATE, 2015).

During our case study, the interviewees also gave some perspective on the impact of agile
practices on distributed team communication. In SQ1, we asked about multiple agile practices
like automated testing, coding standards, collective code ownership, continuous integration,
pair programming, refactoring, requirement workshop, scrum of scrum, incremental design,
spring review/demo, test-driven development, and user stories. Through all these practices,
we got good feedback, driving us to the same results obtained during the systematic mapping
and the interviews.

5.2.2.5 Alignment meetings

Teams can take leverage alignment meetings to mitigate communication problems. There
are different types of alignment meetings, for instance, check-in meetings (see quote EB-4),
feedback meetings (see quotes EB-13 and EB-15), and requirement refinement (see quote
EB-14). However, more than alignment meetings are needed in this process; having some di-
rection in what practices must be followed by teams and which standards must be applied
can drive complete confusion (see quote EC-13). Feedback is a crucial factor when talking
about communication in distributed teams (see quotes EB7 and EB-5); it can also be used as
a knowledge-sharing instrument (see quotes EB-16 and EB-19), helping build a reliable and
open environment (see quotes EB-8 and EA-7). Companies sometimes adopt feedback meet-
ings to discuss process and code improvements (MOE; STRAY; GOPLEN, 2020; CRUZ; JUNIOR;

SARDINHA, 2021).
Having alignment meetings and continuous feedback practices is directly connected with

the agile principles. As the agile manifesto presents in its values, responding to change is
essential, which means that the means need to know about possible modifications or problems.



79

5.2.3 Culture

Our investigation identified cultural aspects from three perspectives: learning culture, trans-
parency, and commitment. In the following sections, we will discuss these perspectives.

5.2.3.1 Learning culture

It is a complex aspect to control, but necessary to spread knowledge when adopting com-
plicated architectures. The learning culture becomes even more critical when the team is
composed of different seniority levels (see quote EA-9). Each person handles and absorbs
knowledge differently, depending on the background (see quote EA-26); some individuals do
not see the necessity to understand the basics behind frameworks, architecture (see quote EA-
20), or tools used in the development process (see quote EA-25). It is necessary to comprehend
the foundation to build a quality product (see quote EA-23). Furthermore, the learning cul-
ture is crucial to achieving an excellent shared understanding (see quote EA-19). However, it is
challenging to create this culture in newcomers (see quote EA-6), regardless of the cases where
the architecture complexity becomes challenging to maintain a good level of understanding
(see quote EA-20).

The learning knowledge connects directly with knowledge-sharing practices and agile prac-
tices designed to achieve this purpose (ISLAM et al., 2012), like pair programming and sprint
demos. Although knowledge-sharing is essential in distributed environments, distributed teams
must accept architectural knowledge to make decisions abroad [SM02].

5.2.3.2 Transparency

Transparency is also related to knowledge-sharing and also open culture. To overcome
challenges generated by distributed teams, they need to be completely transparent about their
motivation for doing something (see quotes EB-8, EB-6, and EA-22). Having the information
flow is essential to maintain every person at the same understanding level (see quotes EA-21
and EA-24).

An open and transparent environment enables building trust between team members
(BETTA; BORONINA, 2018); the lack of trust is a known challenge in a distributed environment,
increasing the time and budget and affecting product quality (HUMAYUN; JHANJHI, 2019).



80

In SQ03, we asked our interviewees whether a lack of trust hurt team communication, and
85% had a positive answer, corroborating our findings in the literature.

Understanding team skills are also necessary to keep transparency and build trust; not trust-
ing each other may drive misunderstandings and increase the risk related to team interaction
(see quotes EA-15, EA-16, and EA-5).

5.2.3.3 Commitment

Commitment is a cultural aspect that pops out during our investigation as a counterpoint to
guidelines. It does not matter if the team has guidelines to follow. Commitment is necessary
when practices are defined; just commitment will help the team members to follow these
practices (see quote EA-14).

5.3 DESTILING OUR SUPPOSITIONS

This section will discuss the suppositions presented in section 5.1, using this study’s results.

5.3.1 SP1: Decoupled software architectures are communication enablers and can

help to mitigate communication challenges in DSD environments.

Software architecture is only sometimes simple to apply and even more complex in dis-
tributed software development environments. During this study, we have identified multiple
architectural styles considered decoupled. Adopting decoupled architecture can work as a com-
munication enabler.

Microservices are one of the multiple types that can be adopted, where the interfaces
are split, making it easier to develop each service more independently. However, sometimes
there are still dependencies between these microservices and require communication between
teams to establish the development boundaries and better understand the business rules shared
between these services.

Another architectural style that may be adopted is event-driven architecture, with a single
point of communication and a more independent communication that improves failure han-
dling. Adopting this type of architecture may help teams to have more independence. However,
it also requires coordination between teams to establish a standard data contract to be followed



81

by everyone producing and consuming events from the environment.
No architecture is free of drawbacks and pitfalls when applied in a distributed software

development environment. Adopting this type of architecture may be more beneficial to DSD
environments, but it is necessary to be aware of the challenges related to adopting it.

5.3.2 SP2: An Architectural Design which enables agile practices and follows

architectural-centric principles can help to coordinate DSD teams and miti-

gate communication challenges

Considering the benefits of applying agile principles and decoupled architecture, it is
clear that adopting architectural-centric principles combined with agile practices benefits DSD
teams.

Agile practices help to keep a good level of understanding between team members, and
following it combined with an architecture that maintains a good structure can mitigate com-
munication challenges. If the architecture is complex, it is necessary to establish a foundation
knowledge from the start and build the project following it. It is essential to keep the same level
of understanding during product development, including newcomers and old team members.

Although adopting architectural knowledge is not yet widely accepted by distributed soft-
ware development teams, some references show that adopting it as a tool to improve the
decision-making process may help avoid communication problems during the development
process.

5.4 CAN ARCHITECTURAL DESIGN, WHICH ENABLES AGILE PRACTICES AND FOL-
LOWS ARCHITECTURAL-CENTRIC PRINCIPLES, HELP COORDINATE DSD TEAMS
AND MITIGATE COMMUNICATION CHALLENGES?

Recapitulating our main research question, we explore how an architectural design that em-
braces agile practices and adheres to architectural-centric principles can effectively coordinate
Distributed Software Development (DSD) teams while alleviating communication challenges.
Our work reveals a series of compelling findings and insights that lend strong support to this
notion:

Adopting architectural-centric principles is a linchpin for DSD teams, offering them a
shared understanding and a common starting point. This alignment proves instrumental in



82

harmonizing efforts and reducing the potential for misunderstandings.
The importance of architectural transparency and an open culture cannot be overstated.

This dynamic fosters trust among team members; certain architectural styles, such as decou-
pled architectures like microservices, emerge as communication facilitators. While challenges
may arise, embracing decoupled architectures minimizes inter-team communication needs and
bolsters team autonomy.

Furthermore, our findings underscore the significance of agile practices — daily standups,
pair programming, and other agile ceremonies — in disseminating knowledge and enriching
communication within distributed teams. These practices serve as conduits for ongoing col-
laboration and shared comprehension.

In addition, the cultivation of architectural knowledge-sharing and learning culture is es-
sential. Equipping team members with a robust foundation in architectural concepts empowers
them to make informed decisions, diminishing the likelihood of miscommunication.

Moreover, our research highlights the value of adhering to architectural guidelines and
standards, encompassing coding practices and architectural patterns. This disciplined approach
contributes to a more coherent and intelligible development process, particularly in the intricate
landscape of a distributed environment.

The synergy between architectural-centric principles and agile practices collectively ad-
dresses multifaceted dimensions of communication, coordination, and shared understand-
ing—imperative elements for the triumph of DSD. Acknowledging the potential for challenges,
it is pivotal to emphasize that a steadfast architectural foundation, coupled with an agile mind-
set, can substantially mitigate these challenges, enhancing the overall effectiveness of DSD
teams.

5.4.1 Lessons learned

The points listed below consolidate the lessons learned during the execution of this work,
based on the results collected during the execution of this work and in the discussion.

• Decoupled architecture mitigates communication challenges: Decoupled architectures,
such as microservices and event-driven architecture, can help reduce communication
overhead and enable more independent development of components, making them suit-
able for distributed software development environments.



83

• Consider pitfalls and drawbacks: While adopting decoupled architectures can be benefi-
cial, it is crucial to be aware of potential pitfalls and challenges, such as knowledge silos
and coordination issues between teams.

• Architecture and agile practices improve communication: Combining architectural-centric
principles with agile methods can help coordinate distributed teams and mitigate com-
munication challenges. Having a foundation of architecture and following established
practices can maintain a good understanding among team members.

• Knowledge-sharing is essential: Creating a learning culture and fostering knowledge-
sharing practices are crucial for spreading architectural knowledge and achieving a shared
understanding among team members.

• Cultural aspects are critical: Transparency and commitment are vital cultural aspects
that can foster trust and open communication between distributed team members.

• Continuous feedback builds trust: Providing continuous feedback and open communica-
tion channels helps build trust among team members and improve communication.

• Time zone proximity facilitates agile ceremonies: Having teams working in the same or
close time zones allows for more effortless execution of agile ceremonies and contributes
to better trust-building within the team.

5.5 CLOSING REMARKS

Concluding this chapter, we emerge with a heightened understanding of our research land-
scape, forged through the crucible of systematic mapping, case study exploration, and reflective
analysis. The amalgamation of these methodologies has yielded a multidimensional compre-
hension of our research domain, one that transcends quantitative data alone to embrace the
qualitative essence of human experiences and perspectives. Through this synthesis, we’ve un-
covered intricate connections, illuminated uncharted areas, and gained a comprehensive view
of the factors that shape our field. Moreover, our journey has not only contributed to the
existing academic discourse but has also revealed lessons learned in navigating the intricacies
of research design, data collection, and interpretation. As we move forward, armed with these
insights, we stand poised to delve deeper into unexplored realms, building upon this foundation
to advance our understanding and contribute to scholarly conversation.



84

6 CONCLUSION

This thesis has provided valuable insights into the impact of software architecture on
distributed software development teams. Through a systematic mapping and case study, several
lessons have been learned that shed light on the challenges and opportunities that arise in such
environments.

The findings highlight the significance of decoupled architectures, such as microservices
and event-driven architecture, in alleviating communication challenges. These architectural
approaches enable teams to work more independently on components, reducing communication
overhead and promoting efficient development.

However, it is important to approach decoupled architectures with a nuanced understand-
ing, as potential drawbacks like knowledge silos and coordination issues can emerge. Awareness
of these pitfalls is essential for informed decision-making and effective implementation.

The study underscores the synergy between architectural-centric principles and agile prac-
tices in enhancing communication within distributed teams. By establishing a solid architectural
foundation and adhering to agile methodologies, teams can better coordinate their efforts and
navigate communication hurdles.

Furthermore, the research highlights the pivotal role of knowledge-sharing in fostering a
shared understanding among team members. Cultivating a learning culture and promoting
practices that facilitate the spread of architectural knowledge can significantly contribute to
team cohesion and effectiveness.

Cultural aspects emerge as a critical factor in distributed teams, with transparency and
commitment being key drivers of trust and open communication. Building trust among team
members, in turn, is bolstered by continuous feedback and open communication channels,
fostering an environment of collaboration and understanding.

Finally, the study emphasizes the value of time zone proximity in facilitating agile cere-
monies and trust-building. When teams operate in the same or nearby time zones, the execution
of agile practices becomes smoother, enabling better coordination and rapport among team
members.

In essence, this research underscores that the success of distributed software develop-
ment teams is deeply intertwined with the interplay of software architecture, agile practices,
knowledge-sharing, cultural aspects, and geographical considerations. By embracing the lessons



85

learned from this study, organizations can navigate the complexities of distributed development
and foster an environment of effective communication, collaboration, and innovation.

Some aspects that were considered possible threats to the validity of this work. The struc-
ture described in the points below was developed based on the aspects defined by Runeson and
Höst (RUNESON; HÖST, 2009). They define four aspects: construct validity, internal validity,
external validity, and reliability.

6.1 LIMITATIONS AND THREATS TO VALIDITY

This section presents the measures taken to address validity threats associated with the
MSL in this study. Three types of validity threats, as described by Ampatzoglu et al. (AMPAT-

ZOGLOU et al., 2019), were identified and addressed through various analyses and actions. The
following subsections detail the validity threats associated with the different activities of this
study and the steps taken to mitigate them.

Internal validity : To identify the most considerable amount of papers and ensure good
coverage of papers related to software architecture and DSD in hybrid environments, the search
string uses multiple synonyms of software architecture, distributed teams, and hybrid and agile
methodologies. Although we only searched four online digital libraries, they are supposed to
cover most of the high-quality publications related to software engineering. In addition, even
trying to avoid bias during the analysis, this study was not peer-reviewed during the extraction
process. Another threat was during our interviews, the transcriptions and quotes presented in
this work had to be translated into english when the interview was in a different language.

Construct Validity : To mitigate this threat, we conducted a peer review process. The first
and second authors thoroughly examined each paper included in the study and discussed any
discrepancies until a consensus was reached. Additionally, a third researcher was engaged to
conduct an independent assessment of the mapping to ensure impartiality.

External Validity : Using a pre-defined search string in well-known bibliographic databases
that cover references in agile development ensured that the findings have a certain level of
generalizability, as most articles in the field are typically published in those databases.



86

6.2 FUTURE WORKS

In this work, we provide valuable insights into software architecture design in distributed
software development, specifically in mitigating communication challenges. Our findings demon-
strate the importance of software architecture in improving team performance, software qual-
ity, and communication. Furthermore, we generated two hypotheses through our discussion,
which could lead to further investigations into the impact of software architecture design on
real teams. While we found a limited number of studies in this area, our results suggest a
promising avenue for future research.

In the list below, we describe some of the future works based on the results obtained from
this work.

• Quantitative Analysis of Communication Overhead Reduction: Conduct a quantitative
study to measure the actual reduction in communication overhead achieved by adopting
decoupled architectures like microservices or event-driven architecture. Compare com-
munication patterns and efficiency metrics before and after architecture changes.

• Case Studies on Knowledge Silos Mitigation: Perform in-depth case studies on organiza-
tions that have adopted decoupled architectures, focusing on how they address knowl-
edge silos and coordination issues between teams. Analyze strategies, best practices, and
real-world challenges.

• Architectural Guidelines for Agile-Distributed Teams: Develop a set of architectural
guidelines specifically tailored to distributed agile teams. Investigate how architectural
decisions can be aligned with agile principles to optimize communication and collabora-
tion among team members.

• Measuring Impact of Learning Culture: Explore the correlation between strong learn-
ing culture and improved communication within distributed teams. Design surveys and
gather data to measure how knowledge-sharing practices impact team dynamics and
performance.

• Cultural Influence on Architecture Adoption: Investigate the role of cultural differences
in the successful adoption of decoupled architectures. Examine how cultural aspects
impact communication practices, and propose strategies to bridge cultural gaps within
distributed teams.



87

• Feedback Mechanisms for Trust Building: Delve deeper into the types of feedback mech-
anisms that are most effective in building trust among distributed team members. Com-
pare different feedback strategies and their impact on team communication and cohesion.

• Long-Term Effects of Architectural Choices: Investigate the long-term effects of archi-
tectural decisions on communication and team dynamics. Study projects with varying
architectural approaches to understand how architectural choices impact collaboration
over extended periods.

• Tooling Support for Distributed Architecture Teams: Evaluate existing and emerging
tools that support communication and collaboration in distributed architecture teams.
Investigate how these tools can enhance communication, architectural visualization, and
decision-making processes.

• Remote Pair Programming in Distributed Architectures: Explore the feasibility and effec-
tiveness of remote pair programming in distributed teams using decoupled architectures.
Assess how this practice influences communication, knowledge transfer, and code quality.



88

REFERENCES

ALI, N.; BEECHAM, S.; MISTRIK, I. Architectural knowledge management in global software
development: a review. In: IEEE. 2010 5th IEEE International Conference on Global Software
Engineering. [S.l.], 2010. p. 347–352.

ALZOUBI, Y. I.; GILL, A. Q. An agile enterprise architecture-driven model for geographically
distributed agile development. In: Transforming Healthcare Through Information Systems.
[S.l.]: Springer, 2016. p. 63–77.

ALZOUBI, Y. I.; GILL, A. Q. An empirical investigation of geographically distributed agile
development: The agile enterprise architecture is a communication enabler. IEEE Access,
IEEE, v. 8, p. 80269–80289, 2020.

ALZOUBI, Y. I.; GILL, A. Q.; MOULTON, B. A measurement model to analyze the effect
of agile enterprise architecture on geographically distributed agile development. Journal of
Software Engineering Research and Development, SpringerOpen, v. 6, n. 1, p. 1–24, 2018.

AMPATZOGLOU, A.; BIBI, S.; AVGERIOU, P.; VERBEEK, M.; CHATZIGEORGIOU, A.
Identifying, categorizing and mitigating threats to validity in software engineering secondary
studies. Information and Software Technology, v. 106, p. 201–230, 2019. ISSN 0950-5849.
Disponível em: <https://www.sciencedirect.com/science/article/pii/S0950584918302106>.

ARANDA, G. N.; VIZCAÍNO, A.; PIATTINI, M. A framework to improve communication
during the requirements elicitation process in gsd projects. Requirements engineering,
Springer, v. 15, p. 397–417, 2010.

AVRITZER, A.; PAULISH, D.; CAI, Y.; SETHI, K. Coordination implications of software
architecture in a global software development project. Journal of Systems and Software,
Elsevier, v. 83, n. 10, p. 1881–1895, 2010.

BAHETI, P.; GEHRINGER, E.; STOTTS, D. Exploring the efficacy of distributed pair
programming. In: SPRINGER. Extreme Programming and Agile Methods—XP/Agile Universe
2002: Second XP Universe and First Agile Universe Conference Chicago, IL, USA, August
4–7, 2002 Proceedings 2. [S.l.], 2002. p. 208–220.

BALALAIE, A.; HEYDARNOORI, A.; JAMSHIDI, P. Microservices architecture enables
devops. London: Sharif University of Technology, 2014.

BANO, M.; ZOWGHI, D.; SARKISSIAN, N. Empirical study of communication structures
and barriers in geographically distributed teams. IET software, Wiley Online Library, v. 10,
n. 5, p. 147–153, 2016.

BEAULIEU, N.; DASCALU, S. M.; HAND, E. Api-first design: A survey of the state
of academia and industry. In: SPRINGER. ITNG 2022 19th International Conference on
Information Technology-New Generations. [S.l.], 2022. p. 73–79.

BECK, K. Extreme Programming: Embrace Change. [S.l.]: Addison Wesley, 2001.

BECK, K. Test-driven development: by example. [S.l.]: Addison-Wesley Professional, 2003.

https://www.sciencedirect.com/science/article/pii/S0950584918302106


89

BECK, K.; BEEDLE, M.; BENNEKUM, A. V.; COCKBURN, A.; CUNNINGHAM, W.;
FOWLER, M.; GRENNING, J.; HIGHSMITH, J.; HUNT, A.; JEFFRIES, R. et al. The agile
manifesto. 2001.

BELSHE, M.; PEON, R. RFC 7540: hypertext transfer protocol version 2 (HTTP/2). [S.l.]:
RFC Editor, 2015.

BETTA, J.; BORONINA, L. Transparency in project management–from traditional to
agile. In: ATLANTIS PRESS. Third International Conference on Economic and Business
Management (FEBM 2018). [S.l.], 2018. p. 446–449.

BIEHL, M. RESTful Api Design. [S.l.]: API-University Press, 2016. v. 3.

BOSCH, J.; BOSCH-SIJTSEMA, P. Coordination between global agile teams: From process
to architecture. In: Agility Across Time and Space. [S.l.: s.n.], 2010.

BOURQUE, P.; FAIRLEY, R. E. et al. Guide to the Software Engineering Body of Knowledge
(SWEBOK): Version 3.0. [S.l.]: IEEE Computer Society Press, 2014.

BREIVOLD, H. P.; SUNDMARK, D.; WALLIN, P.; LARSSON, S. What does research say
about agile and architecture? In: IEEE. 2010 Fifth International Conference on Software
Engineering Advances. [S.l.], 2010. p. 32–37.

CAMARA, R.; ALVES, A.; MONTE, I.; MARINHO, M. Agile global software development: A
systematic literature review. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering. [S.l.: s.n.], 2020. p. 31–40.

CAMARA, R.; MONTE, I.; ALVES, A.; MARINHO, M. Hybrid practices in global software
development: A systematic literature review. International Journal of Software Engineering &
Applications (IJSEA), v. 13, p. 1–17, 2022. ISSN 0975-9018.

CHAMAS, C. L.; CORDEIRO, D.; ELER, M. M. Comparing rest, soap, socket and grpc in
computation offloading of mobile applications: An energy cost analysis. In: IEEE. 2017 IEEE
9th Latin-American Conference on Communications (LATINCOM). [S.l.], 2017. p. 1–6.

CLARK, T.; BARN, B. S. Event driven architecture modelling and simulation. In: IEEE.
Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE).
[S.l.], 2011. p. 43–54.

CLERC, V. Do architectural knowledge product measures make a difference in gsd? In: IEEE.
2009 Fourth IEEE International Conference on Global Software Engineering. [S.l.], 2009. p.
382–387.

CLERC, V.; LAGO, P.; VLIET, H. V. Assessing a multi-site development organization
for architectural compliance. In: IEEE. 2007 Working IEEE/IFIP Conference on Software
Architecture (WICSA’07). [S.l.], 2007. p. 10–10.

CLERC, V.; LAGO, P.; VLIET, H. V. Global software development: are architectural rules the
answer? In: IEEE. International Conference on Global Software Engineering (ICGSE 2007).
[S.l.], 2007. p. 225–234.

CLERC, V.; LAGO, P.; VLIET, H. van. The usefulness of architectural knowledge management
practices in gsd. In: IEEE. 2009 Fourth IEEE International Conference on Global Software
Engineering. [S.l.], 2009. p. 73–82.



90

CONWAY, M. E. How do committees invent. Datamation, v. 14, n. 4, p. 28–31, 1968.

CRNKOVIC, I. Component-based software engineering—new challenges in software
development. Software focus, Wiley Online Library, v. 2, n. 4, p. 127–133, 2001.

CRUZ, E. F. C. d.; JUNIOR, F. E. F.; SARDINHA, E. D. An experience in the use of scrum
and kanban for project development in a waterfall environment. In: Proceedings of the XX
Brazilian Symposium on Software Quality. [S.l.: s.n.], 2021. p. 1–7.

DOGLIO, F. Pro REST API Development with Node. js. [S.l.]: Apress, 2015.

DUSTIN, E.; RASHKA, J.; PAUL, J. Automated software testing: Introduction, management,
and performance: Introduction, management, and performance. [S.l.]: Addison-Wesley
Professional, 1999.

EASTERBROOK, S.; SINGER, J.; STOREY, M.-A.; DAMIAN, D. Selecting empirical
methods for software engineering research. Guide to advanced empirical software engineering,
Springer, p. 285–311, 2008.

EBERT, C.; GALLARDO, G.; HERNANTES, J.; SERRANO, N. Devops. Ieee Software, IEEE,
v. 33, n. 3, p. 94–100, 2016.

EDWARDS, C. Agile enterprise architecture, part 1. USA: ProcessWave, 2006.

ERL, T. Service-oriented architecture. [S.l.]: Citeseer, 1900.

EVANS, E. Domain-driven design: tackling complexity in the heart of software. [S.l.]:
Addison-Wesley Professional, 2004.

EVANS, E. Domain-Driven Design Reference: Definitions and Pattern Summaries. [S.l.]: Dog
Ear Publishing, 2014.

FARIA, H. R. D.; ADLER, G. Architecture-centric global software processes. In: IEEE. 2006
IEEE International Conference on Global Software Engineering (ICGSE’06). [S.l.], 2006. p.
241–242.

FAUZI, S. S. M.; BANNERMAN, P. L.; STAPLES, M. Software configuration management
in global software development: A systematic map. In: IEEE. 2010 Asia Pacific Software
Engineering Conference. [S.l.], 2010. p. 404–413.

FOWLER, M.; FOEMMEL, M. Continuous integration. 2006.

FOWLER, M.; LEWIS, J. Microservices. 2014. Disponível em: <https://martinfowler.com/
articles/microservices.html>.

FRANCESCO, P. D.; LAGO, P.; MALAVOLTA, I. Migrating towards microservice
architectures: an industrial survey. In: IEEE. 2018 IEEE International Conference on Software
Architecture (ICSA). [S.l.], 2018. p. 29–2909.

GLASER, B. G.; STRAUSS, A. L.; STRUTZEL, E. The discovery of grounded theory;
strategies for qualitative research. Nursing research, LWW, v. 17, n. 4, p. 364, 1968.

GUDGIN, M.; HADLEY, M.; MENDELSOHN, N.; MOREAU, J.-J.; NIELSEN, H. F.;
KARMARKAR, A.; LAFON, Y. SOAP Version 1.2. [S.l.]: w3c, 2003.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


91

HERBSLEB, J. D. Global software engineering: The future of socio-technical coordination.
In: IEEE. Future of Software Engineering (FOSE’07). [S.l.], 2007. p. 188–198.

HERBSLEB, J. D.; GRINTER, R. E. Architectures, coordination, and distance: Conway’s law
and beyond. IEEE software, IEEE, v. 16, n. 5, p. 63–70, 1999.

HERBSLEB, J. D.; MOITRA, D. Global software development. [S.l.]: World Scientific, 2015.
v. 4.

HIGHSMITH, J. A.; HIGHSMITH, J. Agile software development ecosystems. [S.l.]:
Addison-Wesley Professional, 2002.

HOLMSTRÖM, H.; FITZGERALD, B.; ÅGERFALK, P. J.; CONCHÚIR, E. Ó. et al. Agile
practices reduce distance in global software development. Information systems management,
Taylor & Francis, v. 23, n. 3, p. 7–18, 2006.

HUMAYUN, M.; JHANJHI, N. Exploring the relationship between gsd, knowledge
management, trust and collaboration. Journal of Engineering Science and Technology, v. 14,
n. 2, p. 820–843, 2019.

HUMBLE, J.; FARLEY, D. Continuous delivery: reliable software releases through build, test,
and deployment automation. [S.l.]: Pearson Education, 2010.

IBM. Innovation in the API economy: Building winning experiences and new capabilities to
compete. 2016.

ILYAS, M.; KHAN, S. U. Software integration in global software development: Success
factors for gsd vendors. In: IEEE. 2015 IEEE/ACIS 16th International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).
[S.l.], 2015. p. 1–6.

ILYAS, M.; KHAN, S. U. An empirical investigation of the software integration success
factors in gsd environment. In: IEEE. 2017 IEEE 15th International Conference on Software
Engineering Research, Management and Applications (SERA). [S.l.], 2017. p. 255–262.

ISLAM, T.; ANWAR, F.; KHAN, S. U. R.; RASLI, A.; AHMAD, U.; AHMED, I. Investigating
the mediating role of organizational citizenship behavior between organizational learning
culture and knowledge sharing. World Applied Sciences Journal, v. 19, n. 6, p. 795–799,
2012.

ISO/IEC/IEEE International Standard - Systems and software engineering – Software life
cycle processes. ISO/IEC/IEEE 12207:2017(E) First edition 2017-11, p. 1–157, 2017.

JACOBSON, D.; BRAIL, G.; WOODS, D. APIs: A strategy guide. [S.l.]: O’Reilly Media, Inc.,
2012.

JAIN, R.; SUMAN, U. Effectiveness of agile practices in global software development.
International Journal of Grid and Distributed Computing, v. 9, n. 10, p. 231–248, 2016.

JAN, S. R.; DAD, F.; AMIN, N.; HAMEED, A.; SHAH, S. S. A. Issues in global software
development (communication, coordination and trust) a critical review. training, v. 6, n. 7,
p. 8, 2016.



92

JUNIOR, I. d. F.; MARCZAK, S.; SANTOS, R.; RODRIGUES, C.; MOURA, H. C2m: a
maturity model for the evaluation of communication in distributed software development.
Empirical Software Engineering, Springer, v. 27, n. 7, p. 188, 2022.

KHAN, A. A.; BASRI, S.; DOMINC, P. A proposed framework for communication risks during
rcm in gsd. Procedia-Social and Behavioral Sciences, Elsevier, v. 129, p. 496–503, 2014.

KIRCHER, M.; JAIN, P.; CORSARO, A.; LEVINE, D. Distributed extreme programming.
Extreme Programming and Flexible Processes in Software Engineering, Italy, p. 66–71, 2001.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Reviews
in Software Engineering. 2007.

KORNSTÄDT, A.; SAUER, J. Mastering dual-shore development–the tools and materials
approach adapted to agile offshoring. In: SPRINGER. International Conference on Software
Engineering Approaches for Offshore and Outsourced Development. [S.l.], 2007. p. 83–95.

KORNSTADT, A.; SAUER, J. Tackling offshore communication challenges with agile
architecture-centric development. In: IEEE. 2007 Working IEEE/IFIP Conference on Software
Architecture (WICSA’07). [S.l.], 2007. p. 28–28.

KULKARNI, G. Cloud computing-software as service. International Journal of Cloud
Computing And Services Science, IAES Institute of Advanced Engineering and Science, v. 1,
n. 1, p. 11, 2012.

LEFFINGWELL, D. SAFe 4.5 reference guide: scaled agile framework for lean enterprises.
[S.l.]: Addison-Wesley Professional, 2018.

LENARDUZZI, V.; SIEVI-KORTE, O. On the negative impact of team independence in
microservices software development. In: Proceedings of the 19th International Conference on
Agile Software Development: Companion. [S.l.: s.n.], 2018. p. 1–4.

LI, H. Restful web service frameworks in java. In: IEEE. 2011 IEEE International Conference
on Signal Processing, Communications and Computing (ICSPCC). [S.l.], 2011. p. 1–4.

MA, X.; LIU, Y. An empirical study of maven archetype. In: SEKE. [S.l.: s.n.], 2020. p.
153–157.

MALAVOLTA, I.; CAPILLA, R. Current research topics and trends in the software architecture
community: Icsa 2017 workshops summary. In: IEEE. 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). [S.l.], 2017. p. 1–4.

MARÉCHAUX, J.-L. Combining service-oriented architecture and event-driven architecture
using an enterprise service bus. IBM developer works, v. 12691275, 2006.

MARINHO, M.; CAMARA, R.; SAMPAIO, S. Toward unveiling how safe framework supports
agile in global software development. IEEE Access, IEEE, v. 9, p. 109671–109692, 2021.

MARINHO, M.; NOLL, J.; BEECHAM, S. Uncertainty management for global software
development teams. In: IEEE. 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC). [S.l.], 2018. p. 238–246.



93

MARINHO, M.; NOLL, J.; RICHARDSON, I.; BEECHAM, S. Plan-driven approaches are
alive and kicking in agile global software development. In: International Symposium on
Empirical Software Engineering and Measurement (ESEM). Porto de Galinhas, Brazil: IEEE,
2019. p. 1–11.

MARTIN, R. C. Clean architecture. [S.l.]: Prentice Hall, 2017.

MAY, I. Systems and software engineering–architecture description. [S.l.], 2011.

MICROSYSTEMS, S. RPC: Remote Procedure Call Protocol Specification Version 2. 2009.
Disponível em: <https://www.rfc-editor.org/rfc/rfc5531>.

MISHRA, A.; MISHRA, D. Software architecture in distributed software development: A
review. In: SPRINGER. OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". [S.l.], 2013. p. 284–291.

MOE, N. B.; STRAY, V.; GOPLEN, M. R. Studying onboarding in distributed software
teams: a case study and guidelines. In: Proceedings of the 24th International Conference on
Evaluation and Assessment in Software Engineering. [S.l.: s.n.], 2020. p. 150–159.

NEWCOMER, E.; LOMOW, G. Understanding SOA with Web services. [S.l.]: Addison-Wesley,
2005.

NEWMAN, S. Building microservices. [S.l.]: "O’Reilly Media, Inc.", 2021.

NOLL, J.; BEECHAM, S.; RICHARDSON, I. Global software development and collaboration:
barriers and solutions. ACM inroads, ACM New York, NY, USA, v. 1, n. 3, p. 66–78, 2011.

NORD, R. L.; TOMAYKO, J. E. Software architecture-centric methods and agile development.
IEEE software, IEEE, v. 23, n. 2, p. 47–53, 2006.

NOSEK, J. T. The case for collaborative programming. Communications of the ACM, ACM
New York, NY, USA, v. 41, n. 3, p. 105–108, 1998.

OVASKA, P.; ROSSI, M.; MARTTIIN, P. Architecture as a coordination tool in multi-site
software development. Software Process: Improvement and Practice, Wiley Online Library,
v. 8, n. 4, p. 233–247, 2003.

PAGE-JONES, M. The Practical Guide to Structured Systems Design: 2nd Edition. USA:
Yourdon Press, 1988. ISBN 0136907695.

PAUTASSO, C. Restful web service composition with bpel for rest. Data & Knowledge
Engineering, Elsevier, v. 68, n. 9, p. 851–866, 2009.

PERREY, R.; LYCETT, M. Service-oriented architecture. In: 2003 Symposium on Applications
and the Internet Workshops, 2003. Proceedings. [S.l.: s.n.], 2003. p. 116–119.

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes, ACM, v. 17, n. 4, p. 40–52, 1992.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies
in software engineering. In: 12th International Conference on Evaluation and Assessment in
Software Engineering (EASE) 12. [S.l.: s.n.], 2008. p. 1–10.

https://www.rfc-editor.org/rfc/rfc5531


94

PETROV, V.; AZALETSKIY, P. Socio-informational system contradictions and evolution
laws. TRIZ in Evolution, . . . , n. 1, p. 265–275, 2023.

QIAN, L.; LUO, Z.; DU, Y.; GUO, L. Cloud computing: An overview. In: SPRINGER. IEEE
International Conference on Cloud Computing. [S.l.], 2009. p. 626–631.

QURASHI, S. A.; QURESHI, M. R. J. Scrum of scrums solution for large size teams using
scrum methodology. arXiv, 2014. Disponível em: <https://arxiv.org/abs/1408.6142>.

RÄTY, P.; BEHM, B.; DIKERT, K.-K.; PAASIVAARA, M.; LASSENIUS, C.; DAMIAN, D.
Communication practices in a distributed scrum project. In: The 4th International Conference
on Collaborative Innovation Networks COINs13, Santiago de Chile, August 11-13 2013. [S.l.:
s.n.], 2013.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a Changing
World. [S.l.]: " O’Reilly Media, Inc.", 2013.

RIGBY, M. Component-Based Software Engineering: Software Architecture. [S.l.]:
CreateSpace Independent Publishing Platform, 2016.

ROBSON, C. Real world research blackwell. 2º edição, 2002.

RUNESON, P.; HÖST, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, Springer, v. 14, n. 2, p. 131, 2009.

SALAMEH, A.; BASS, J. M. Heterogeneous tailoring approach using the spotify model. In:
Proceedings of the Evaluation and Assessment in Software Engineering. [S.l.: s.n.], 2020. p.
293–298.

SAUER, J. Architecture-centric development in globally distributed projects. In: Agility Across
Time and Space: Implementing Agile Methods in Global Software Projects. [S.l.]: Springer,
2010. p. 321–329.

SCHREYER, A. C. Architectural Design with SketchUp: Component-based Modeling,
Plugins, Rendering, and Scripting. [S.l.]: John Wiley & Sons, 2012.

SCHWABER, K.; SUTHERLAND, J. The scrum guide. Scrum Alliance, v. 21, n. 1, p. 1–38,
2011.

Scientific Software Development GmbH. ATLAS.ti. Disponível em: <https://atlasti.com/>.

SHRIVASTAVA, S. V.; DATE, H. A framework for risk management in globally distributed
agile software development (agile gsd). differences, v. 4, n. 3, p. 97–111, 2015.

SIEVI-KORTE, O.; BEECHAM, S.; RICHARDSON, I. Challenges and recommended practices
for software architecting in global software development. Information and software technology,
Elsevier, v. 106, p. 234–253, 2019.

SIEVI-KORTE, O.; RICHARDSON, I.; BEECHAM, S. Software architecture design in global
software development: An empirical study. Journal of Systems and Software, Elsevier, v. 158,
p. 110400, 2019.

https://arxiv.org/abs/1408.6142
https://atlasti.com/


95

TAYLOR, R. N.; MEDVIDOVIC, N.; ANDERSON, K. M.; WHITEHEAD, E. J.; ROBBINS,
J. E.; NIES, K. A.; OREIZY, P.; DUBROW, D. L. A component-and message-based
architectural style for gui software. IEEE Transactions on Software Engineering, IEEE, v. 22,
n. 6, p. 390–406, 1996.

TEKINERDOGAN, B.; CETIN, S.; BABAR, M. A.; LAGO, P.; MÄKIÖ, J. Architecting in
global software engineering. ACM SIGSOFT Software Engineering Notes, ACM New York,
NY, USA, v. 37, n. 1, p. 1–7, 2012.

URREGO, J.; MUÑOZ, R.; MERCADO, M.; CORREAL, D. Archinotes: A global agile
architecture design approach. In: SPRINGER. International Conference on Agile Software
Development. [S.l.], 2014. p. 302–311.

VALLON, R.; ESTÁCIO, B. J. da S.; PRIKLADNICKI, R.; GRECHENIG, T. Systematic
literature review on agile practices in global software development. Information and Software
Technology, Elsevier, v. 96, p. 161–180, 2018.

VANZIN, M.-A.; RIBEIRO, M. B.; PRIKLADNICKI, R.; CECCATO, I.; ANTUNES, D. Global
software processes definition in a distributed environment. In: IEEE. 29th Annual IEEE/NASA
Software Engineering Workshop. [S.l.], 2005. p. 57–65.

VARANASI, B.; BELIDA, S.; VARANASI, B.; BELIDA, S. Maven archetypes. Introducing
Maven, Springer, p. 47–62, 2014.

VLIET, H. V. Software architecture knowledge management. In: IEEE. 19th australian
conference on software engineering (aswec 2008). [S.l.], 2008. p. 24–31.

WANG, X.; ZHAO, H.; ZHU, J. Grpc: A communication cooperation mechanism in distributed
systems. ACM SIGOPS Operating Systems Review, ACM New York, NY, USA, v. 27, n. 3,
p. 75–86, 1993.

WILLIAMS, L. The collaborative software process phd dissertation. Department of Computer
Science, 2000.

WOLFF, E. Microservices: flexible software architecture. [S.l.]: Addison-Wesley Professional,
2016.

YANG, C.; LIANG, P.; AVGERIOU, P. A systematic mapping study on the combination
of software architecture and agile development. Journal of Systems and Software, Elsevier,
v. 111, p. 157–184, 2016.

YILDIZ, B. M.; TEKINERDOGAN, B.; CETIN, S. A tool framework for deriving the
application architecture for global software development projects. 2012. 94–103 p.



96

APPENDIX A – SELECTED PAPERS

Id Title Ref

1 Archinotes: A Global Agile Architecture Design Approach (URREGO et al.,
2014)

2 Do Architectural Knowledge Product Measures Make a Differ-
ence in GSD? (CLERC, 2009)

3 Global Software Development: Are Architectural Rules the An-
swer?

(CLERC; LAGO;
VLIET, 2007b)

4 Mastering Dual-Shore Development – The Tools and Materials
Approach Adapted to Agile Offshoring

(KORNSTÄDT;
SAUER, 2007)

5 Tackling Offshore Communication Challenges with Agile
Architecture-Centric Development

(KORNSTADT;
SAUER, 2007)

6 On the negative impact of team independence in microservices
software development

(LENARDUZZI;
SIEVI-KORTE,
2018)

7 Software Architecture in Distributed Software Development: A
Review

(MISHRA;
MISHRA, 2013)

8 Architecting in Global Software Engineering (TEKINERDOGAN
et al., 2012)

9 Architecture-centric Development in Globally Distributed
Projects (SAUER, 2010)

10 Software architecture design in global software development: An
empirical study

(SIEVI-KORTE;
RICHARDSON;
BEECHAM, 2019)

11 An Agile Enterprise Architecture-Driven Model for Geographically
Distributed Agile Development

(ALZOUBI; GILL,
2016)

12 A measurement model to analyze the effect of agile enterprise
architecture on geographically distributed agile development

(ALZOUBI; GILL;
MOULTON, 2018)

13
An Empirical Investigation of Geographically Distributed Agile
Development: The Agile Enterprise Architecture Is a Communi-
cation Enabler

(ALZOUBI; GILL,
2020)



97

APPENDIX B – INTERVIEW QUESTIONS

Code Question

IQ01
Which architectural practices/process do you think that could improve com-
munication between team members spread across multiple locations/coun-
tries? Why do you think they could help ?

IQ02 Do you think that architectural practices/rules can help to avoid misunder-
standings ? why ?

IQ03 Would you link to highlight any development or architectural practice that
you think can help to mitigate miscommunication ?



98

APPENDIX C – SURVEY QUESTIONS

C.1 PROCESSES AND PRACTICES

Question Code: SQ01

Question: Which of the following practices do you use?

Alternative Type:

Likert Scale

1 = We never use it
2 = We rarely use it
3 = We sometimes use it
4 = We often use it
5 = We always use the practice

Alternatives:

SQ01A01 = Automated Testing
SQ01A02 = Coding Standards
SQ01A03 = Collective Code Ownership
SQ01A04 = Continuous Integration
SQ01A05 = Pair Programming
SQ01A06 = Refactoring
SQ01A07 = Requirements Workshop
SQ01A08 = Scrum of Scrum
SQ01A09 = Simple/Incremental Design
SQ01A10 = Sprint review/demo
SQ01A11 = Test Driven Development
SQ01A12 = User stories



99

Question Code: SQ02

Question:
Which of the following architectural rules/designs/frameworks do
you use?

Alternative Type:

Likert Scale

1 = We never use it
2 = We rarely use it
3 = We sometimes use it
4 = We often use it
5 = We always use the practice

Alternatives:

SQ02A01 = Application Programming Interface
SQ02A02 = Domain-Driven Design
SQ02A03 = Event-Driven Architecture
SQ02A04 = Microservices
SQ02A05 = Model-Driven Design
SQ02A06 = REST/RESTful
SQ02A07 = Service-Oriented Architecture
SQ02A08 = Component-based architecture



100

Question Code: SQ03

Question: The following aspects have a bad impact on team communication.

Alternative Type:

Likert Scale

1 = Strongly agree
2 = Agree
3 = Neither agree nor disagree
4 = Disagree
5 = Strongly disagree

Alternatives:

SQ03A01 = Lack of skills
SQ03A02 = Lack of trust
SQ03A03 = Language limitation
SQ03A04 = Not being aware of cultural differences
SQ03A05 = Poor communication
SQ03A06 = Poor documentation
SQ03A07 = Rare face-to-face interaction

C.2 IMPACT OF SOFTWARE ARCHITECTURE ON DISTRIBUTED TEAMS

Question Code: SQ04

Question:
Software architecture can positively impact software development
teams working in multiple locations.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



101

Question Code: SQ05

Question:
Adopting micro services or/and micro frontends can help improve
communication between team members in multiple locations.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ06

Question:
Event-driven architecture can help improve communication be-
tween team members in multiple locations.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



102

Question Code: SQ07

Question:
Component-based architecture can help improve communication
between team members in various places.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ08

Question:
Domain-Driven Design can help improve the communication be-
tween team members on numerous sites.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



103

Question Code: SQ09

Question:
A decoupled component is a solution to mitigate communication
challenges.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ10

Question: Microservices generate decoupled components.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ11

Question:
Having decoupled components architecture reduces the necessity
for inter-team communication.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



104

Question Code: SQ12

Question:
Architectural knowledge improves performance on distributed
teams.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ13

Question:
Micro services can provide a better component overview and en-
able less coupling between applications.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



105

Question Code: SQ14

Question:

The knowledge transfer practices (like pair programming, compo-
nents documentation, shadowing, etc.) help to reduce communi-
cation problems on distributed teams.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ15

Question:
Using APIs (Application Programming Interfaces) generates less
interdependency between components and enables micro services.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



106

Question Code: SQ16

Question:
Centralized architectural modifications help to avoid communica-
tion challenges.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5

Question Code: SQ17

Question: Architectural knowledge improves distributed teams’ performance.

Alternative Type:

Likert Scale

1 = Totally disagree
2 = Partially disagree
3 = I don’t know
4 = Partially agree
5 = Totally agree

Alternatives: 1 to 5



107

C.3 DEMOGRAPHIC QUESTIONS

Question Code: SQ18

Question: Which country are you located in?

Alternative Type: Multiple Choice

Alternatives:

SQ18A01 = Spain
SQ18A02 = Germany
SQ18A03 = India
SQ18A04 = Portugal
SQ18A05 = Others

Question Code: SQ19

Question: What is your major role in your current project?

Alternative Type: Multiple Choice

Alternatives:

SQ19A01 = Software Developer
SQ19A02 = Team Lead
SQ19A03 = Quality Analyst
SQ19A04 = Software Architect
SQ19A05 = Others

Question Code: SQ20

Question:
What’s your current education level? (consider the most recent
completed)

Alternative Type: Multiple Choice

Alternatives:

SQ20A01 = High School degree
SQ20A02 = Technical degree
SQ20A03 = Bachelor’s degree
SQ20A04 = Master’s degree
SQ20A05 = Doctorate degree
SQ20A06 = Others



108

Question Code: SQ21

Question:
How many years of experience do you have in software and systems
development?

Alternative Type: Multiple Choice

Alternatives:

SQ21A01 = < 1 year
SQ21A02 = 1 - 2 years
SQ21A03 = 3 - 5 years
SQ21A04 = 6 - 10 years
SQ21A05 = > 10 years

Question Code: SQ22

Question:
Are there people on your team that came from a country that is
not the same as you?

Alternative Type: Multiple Choice

Alternatives:

SQ22A01 = Yes, 1 person
SQ22A02 = Yes, 2-3 people
SQ22A03 = Yes, more than 3 people
SQ22A04 = No

Question Code: SQ23

Question: How many people your current team has?

Alternative Type: Multiple Choice

Alternatives:

SQ23A01 = < 5 people
SQ23A02 = 6 - 10 people
SQ23A03 = 11 - 15 people
SQ23A04 = 16 - 20 people
SQ23A05 = > 20 people



109

Question Code: SQ23

Question: How many people your current team has?

Alternative Type: Multiple Choice

Alternatives:

SQ23A01 = < 5 people
SQ23A02 = 6 - 10 people
SQ23A03 = 11 - 15 people
SQ23A04 = 16 - 20 people
SQ23A05 = > 20 people

Question Code: SQ24

Question:
Please write below if you want to add any other information to
this research.

Alternative Type: Open answer

Alternatives: None



110

APPENDIX D – EXECUTIVE SUMMARY

Executive Summary 
 
Summary development by Thiago Gomes based on “The software architecture 
challenges in Agile Distributed Software Development environments” dissertation 
presented as partial requirement to obtain the master’s degree in applied informatics 
from the Federal Rural University of Pernambuco (UFRPE). 
 
Study Overview 
 
The original study had the objective to study the challenges related to software 
architecture design in a software development environment where the team 
members are spread across multiple locations which drives to challenges related to 
communication and coordination. 
 
Introduction 
 
The study cited before was conducted in two phases, first we analyze the state of art 
related to the methods and challenges connected between managing distributed 
software development teams and how software architecture impacts the 
coordination and communication. The second phase we analyze the market 
perspective about the communication between team members spread in multiple 
location and relate these perspectives with practical technics that could help to 
mitigate communication challenges. 
 
Outcome 
 
As outcome from this analysis, we extract a set of lessons learned during the 
execution process which can be employed to improve the dynamics in distributed 
software development teams.  
 The main aspects surrounded by the lessons learned are software 
architecture design, challenges awareness and continuous communication. The 
challenges are described below. 
 

1. Decoupled architecture mitigates communication challenges: Decoupled 
architectures, such as microservices and event-driven architecture, can help 
reduce communication overhead and enable more independent development 
of components, making them suitable for distributed software development 
environments. 
 

2. Consider pitfalls and drawbacks: While adopting decoupled architectures can 
be beneficial, it is crucial to be aware of potential pitfalls and challenges, such 
as knowledge silos and coordination issues between teams. 
 

3. Architecture and agile practices improve communication: Combining 
architectural-centric principles with agile methods can help coordinate 



111

distributed teams and mitigate communication challenges. Having a 
foundation of architecture and following established practices can maintain a 
good understanding among team members. 

 
4. Knowledge-sharing is essential: Creating a learning culture and fostering 

knowledge sharing practices are crucial for spreading architectural 
knowledge and achieving a shared understanding among team members. 
 

5. Cultural aspects are critical: Transparency and commitment are vital cultural 
aspects that can foster trust and open communication between distributed 
team members. 
 

6. Continuous feedback builds trust: Providing continuous feedback and open 
communication channels helps build trust among team members and 
improve communication. 

 
7. Time zone proximity facilitates agile ceremonies: Having teams working in the 

same or close time zones allows for more effortless execution of agile 
ceremonies and contributes to better trust-building within the team. 

 
Conclusions and Final Considerations 
 
Each case scenario and each team have its own challenges, so it’s important to 
evaluate how each one of this aspect can be applied in every situation. In most 
cases, challenge awareness can help to mitigate future problems, being aware is the 
first step to understand and avoid problems related to miscommunication or 
misunderstanding. 
 
All the lessons learned presented before can be used as reference to build your own 
strategy to mitigate problems in distributed software development teams. 
 
 


	Title page
	
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	Lista de quadros
	List of Tables
	Contents
	Introduction
	Motivation
	Objectives
	Specific objectives

	Theoretical Reference
	Software Architecture
	Software Architecture Design

	Architectural Rules and Design
	Application Programming Interface
	Domain-Driven Design
	Event-Driven Architecture
	Microservices
	Model-Driven Design
	Service-Oriented Architecture
	REST/RESTful
	Component-Based Architecture

	Distributed Software Development (DSD)
	Agile Software Development
	Pair Programmming
	Automated Testing
	Continuous Integration
	Refactoring
	Test-Driven Development
	Coding Standards
	Continuous Delivery

	Software Architecture and Agile Practices
	Closing Remarks

	Research Method
	Systematic Literature Mapping
	Research questions
	Definition of inclusion and exclusion criteria
	Search string
	Document selection
	Data Extraction and Analysis

	Case study
	Case study design
	Objective
	The case
	Theoretical Basis
	Research Questions
	Procedures
	Selection Strategy

	Preparation to collect data
	Gathering evidence
	Analyzing the collected data
	Reporting

	Closing Remarks

	Results
	Systematic Literature Mapping (SLM) Results
	Microservices and Communication
	Architectural-centric development and performance on distributed teams
	Agile principles and DSD communication
	Losely coupled components and communication challenges on DSD

	Case Study Results
	Survey
	Interviews

	Closing Remarks

	Discussion
	Systematic Mapping
	How software architecture design impacts the DSD environment?
	Is there any architectural design that can positively impact the DSD environment?

	Case Study
	Architecture
	Coding standards
	Adopting archetypes
	Decoupled Architecture
	Team independency
	Guidelines

	Communication
	Communication Facilitator
	Face-to-face meetings
	Less team interaction
	Agile ceremonies and management frameworks
	Alignment meetings

	Culture
	Learning culture
	Transparency
	Commitment


	Destiling our suppositions
	SP1: Decoupled software architectures are communication enablers and can help to mitigate communication challenges in DSD environments.
	SP2: An Architectural Design which enables agile practices and follows architectural-centric principles can help to coordinate DSD teams and mitigate communication challenges

	Can architectural Design, which enables agile practices and follows architectural-centric principles, help coordinate DSD teams and mitigate communication challenges?
	Lessons learned

	Closing Remarks

	Conclusion
	Limitations and threats to validity
	Future works

	References
	Selected Papers
	Interview Questions
	Survey Questions
	Processes and Practices
	Impact of software architecture on distributed teams
	Demographic questions

	Executive Summary

