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Abstract

The activation function plays an important role in an artificial neural network by performing

a non-linear transformation of the input data, which enables the network to learn complex

patterns. Despite being a well-established field of study, there is still much interest

in discovering new activation functions that can accelerate training and increase the

performance of neural networks. Recent studies have demonstrated the potential of

activation functions that have weights and are able to adapt to the input data during the

training process. Also, there has been growing interest in periodic functions that are able

to learn global patterns, improving the generalization of models. Following these steps,

this work aims to evaluate the performance of the activation function called Global-Local

Neuron (GLN) in order to investigate its performance in untested types of problems, such as

image compression and classification and multiclass classification. Recently proposed, this

function differs from most trainable functions, which only adjust their shape or combine

functions with similar characteristics. This one combines two distinct and complementary

activation functions, one with local properties and the other with global properties. It also

proposes and evaluates other variations of the GLN function using activation functions

such as the ReLU and Mish functions as alternatives for the local component and the

recently proposed Growing Cosine Unit as an alternative to the global component of the

GLN. Datasets with varied characteristics and widely used as benchmarks by the scientific

community were used. The network training used the k-fold cross-validation method to

ensure a robust evaluation and, for each activation function evaluated, four models were

created with two different values for the batch size and two methods of initializing the

weights so as not to restrict the study to specific parameters that may benefit a specific

function. At least 30 training rounds were also performed for each model in order to

perform a statistical significance analysis using the KS-Test method and verify whether

the differences in the results found are relevant. The results demonstrated that the GLN

is capable of adapting and can find, with the functions employed in its composition, an

efficient combination, being, in general, statistically similar to the best results of the

individual functions and in some cases superior. The results brought further evidence to

the fact that there is no ideal activation function for all types of problems and situations,

and that GLN, and its variations, can be very interesting alternatives as a function in

different scenarios.



Keywords: Activation Function, Neural Networks, Trainable Activation Function,

Global-Local Neuron, Local and Global Features



Resumo

A função de ativação desempenha um importante papel em uma rede neural artificial

ao fazer uma transformação não linear dos dados de entrada, o que possibilita a rede

ser capaz de aprender padrões complexos. Apesar de ser um campo de estudo bem

consolidado, ainda existe muito interesse em descobrir novas funções de ativação que

possam acelerar o treinamento e aumentar a performance das redes neurais. Estudos

recentes tem demonstrado os potenciais das funções de ativação que possuem pesos

e são capazes de se adaptarem a partir dos dados de entrada durante o processo de

trenamento. Também, tem havido crescente interesse nas funções periódicas que são

capazes de aprender padrões globais, melhorando a generalização dos modelos. Seguindo

esses passos, este trabalho tem o objetivo de avaliar o desempenho da função de ativação

chamada Global-Local Neuron (GLN) a fim de investigar o seu desempenho em tipos de

problemas não testados, como de compactação e classificação de imagens e classificação

multiclasse. Recentemente proposta, essa função difere da maioria das funções treináveis,

que apenas ajustam sua forma ou combinam funções com características semelhantes. Esta,

combina duas funções de ativação distintas e que se complementam, uma com propriedade

local e outra com propriedade global. Também, propõe, e avalia, outras variações da

função GLN utilizando em sua composição funções de ativação como as funções ReLU

e Mish como alternativas para a componente local e a função recém proposta cosseno

crescente como alternativa à componente global do GLN. Foram empregados datasets com

características variadas e muito utilizados como benchmarking pela comunidade científica.

O treinamento da rede usou o método de validação cruzada k-fold para garantir uma

avaliação robusta e, para cada função de ativação avaliada, foram criados quatro modelos

com dois valores diferentes para o tamanho do batch e dois métodos de inicialização dos

pesos de modo a não restringir o estudo a parâmetros específicos que podem beneficiar

alguma função específica. Também foram realizadas pelo menos 30 rodadas de treinamento

para cada modelo, de modo a realizar uma análise da significância estatística pelo método

KS-Teste e comprovar se as diferenças nos resultados encontrados são relevantes. Os

resultados demostraram que o GLN é capaz de se adaptar e consegue encontrar, com as

funções empregadas em sua composição, uma combinação eficiente, sendo, de modo geral,

estatisticamente similares aos melhores resultados das funções individuais e em alguns

casos superior. Os resultados trouxeram mais evidências para o fato que não há uma



função de ativação ideal para todos os tipos de problemas e situações, e que o GLN, e suas

variações, podem ser alternativas muito interessantes como função em diversos cenários.

Palavras-chave: Função de Ativação, Redes Neurais, Função de ativação treinável,

Neurônio Global-Local, Recursos locais e globais
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1 Introduction

1.1 Justification

We cannot talk about neural networks without talking about activation functions,

as they play a fundamental role in these networks’ capacity. They bring the fundamental

nonlinearity so that these networks learn complex patterns from input data. Therefore,

notable advances in neural networks are also intrinsically linked to the history of the

development and innovations of activation functions.

Initially, the perceptron algorithm, developed in the 1950s, a precursor to neural

networks, applied the Heaveside Step function as the activation function. The Heaveside

Stepe function is a binary activation function that produces the output 1 or 0 depending

on the threshold reached (JAGTAP; KARNIADAKIS, 2022).

At the end of the 1980s, with the return of interest in neural networks, due to

the great advancement brought by the backpropagation algorithm, and the creation of

the first MLP neural network, the sigmoidal function gained popularity. This non-linear

function returns a continuous output between 0 and 1. The sigmoidal function employment

was a significant advance for neural networks. It allowed the neural networks to model

probabilities another other things (NWANKPA et al., 2018), solving problems beyond

simple binary classifications.

Another function that became very common as an activation function in neural

networks was the hyperbolic tangent, replacing the sigmoid function, as it provided better

performance (GOODFELLOW et al., 2016). It is a scaled sigmoid function, but centered

on zero, which made the output distribution more symmetric and was therefore often

preferred (BUDUMA; LOCASCIO, 2017). These activation functions, despite being

widely used, are saturated (XU et al., 2016), leading to problems of vanishing gradient

and gradient explosion, especially in very deep networks, thus making it difficult for the

network to converge during training.

Research has also studied the use of alternative activation functions such as the

use of periodic functions (MCCAUGHAN, 1997; SOPENA et al., 1999), such as the sine

trigonometric function, which is non-monotonic, different from the traditional sigmoid

function and Tanh, monotone. These studies began to demonstrate the potential of these
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oscillatory functions by demonstrating that they could outperform traditional networks in

several aspects in different tasks.

In 2010, a new activation function was introduced in the article "Rectified Linear

Units Improve Restricted Boltzmann Machines" (NAIR; HINTON, 2010). This article

details an approach to improve the performance of Restricted Boltzmann Machines (RBMs)

by replacing binary hidden units with rectified linear units (ReLUs). Since then, ReLU

has become the most widely used activation function (GOODFELLOW et al., 2016).

Despite the wide use of the ReLus functions, mainly in Convolutional Neural

Networks, many variants were created to solve its original limitations. Like the "Dead

Neuron" (when the neuron can no longer learn due to the negative value as input),

non-zero-centeredness, and sensitivity to exploding gradients. Variants such as Leaky

ReLU (XU et al., 2015), Prametric ReLU (PReLU) (HE et al., 2015a), and Exponential

Linear Unit (ELU) (CLEVERT et al., 2015) were developed by introducing slopes or other

adaptations to avoid returning a zero value in the negative part of the function.

The academic community’s interest in activation functions has returned very

strongly since then, largely trying to resolve the limitations and disadvantages of

classical activation functions and the importance that the activation function has on

network performance. New proposals have emerged proposing that the combination

of existing activation functions can help solve these problems, such as Sigmoid and

Relu (MASTROMICHALAKIS, 2021), and also these with ELU (KILIçARSLAN; CELIK,

2021).

Another aspect that emerged was that of trainable activation functions. Although

it is not a new idea, as of 2018, there has been a growing interest in these activation

functions that have the ability to learn through the network (APICELLA et al., 2021).

These functions have adjustable parameters, as well as the weights and biases of the

network, enabling dynamic adaptation depending on the input data. This capability

has brought excellent results in terms of performance, convergence, and generalization of

models (LIAO, 2020; APICELLA et al., 2019; SUBRAMANIAN et al., ; HE et al., 2015a).

Generally, the same activation function is employed for all neurons in the same

layer of the network. However, proposals have emerged to allow that, in addition to having

a trainable activation function, each neuron also has its own activation function adjusted

from the input set (DUSHKOFF; PTUCHA, 2016; ERTUğRUL, 2018), allowing a more
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subtle response of each neuron.

After a long period, non-monotonic functions regained interest in the literature.

Since traditional functions cannot adequately model periodic signals, especially outside the

training data range (ZIYIN et al., 2020; ROBIN et al., 2022), the use of periodic functions

becomes useful in that it is possible to better extrapolate data. Furthermore, they are

ideal for capturing repetitive patterns in data.

Despite these benefits, they are much more complex to train (PARASCANDOLO

et al., 2017; WU, 2022), due to the presence of multiple local minima and because they

are very sensitive to network initialization conditions (RAMASINGHE; LUCEY, 2022).

Still, several recent articles have explored these oscillatory functions: (MALLICK

et al., 2020) presents a study with a periodic perceptron with the results showing that it

outperforms the multilayer perceptron in the tested tasks (XOR and parity); (CHAN et

al., 2018) presents the SinP[N] activation function that brought faster convergence and

accuracy similar to those obtained in tests using the ReLU and Swish functions; (MEHTA

et al., 2021) details a new approach in the functional representation of signals using neural

networks with periodic activations and a modulation structure; (SITZMANN et al., 2020)

explores periodic activation functions in neural networks for implicit neural representations;

(NOEL et al., 2021) introduces a new oscillatory activation function called the Growing

Cosine Unit that allows a single neuron to learn the XOR function.

Building on the ideas of trainable and adaptive functions and the benefits of periodic

functions, a new activation function called the Global Local Neuron (GLN) (FERREIRA

et al., 2021) emerged in 2021. This activation function combines local and global learning

properties into one single neuron in addition to enabling dynamic adjustment of weights

between these different properties, allowing for a finer adaptation of its characteristics

during the training process.

The GLN was extensively tested in two types of problems, regression and solving

differential equations, and generally had a superior performance or statistically similar to

those obtained by the functions that compose it, sinusoidal function or hyperbolic tangent

function.

This excellent initial performance, in the scope of these problems, indicates that

GLN can be efficient in capturing patterns with local and global characteristics that are

properties of the most diverse types of problems.
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1.2 Research Problem

Does the use of trainable activation functions, which combine two activation

functions that are different in their characteristics, one global and the other local, bring

benefits for better accuracy, lower loss values, and speed of convergence in artificial neural

networks?

1.3 Objectives

1.3.1 General Objectives

The general objective of this research is to evaluate the performance of artificial

neural networks that use trainable activation functions with two components (fixed

activation functions), distinct in their characteristics, specifically the GLN function and its

variations, compared to the use of these functions alone. In solving multiclass and image

classification problems.

1.3.2 Specific objectives

• Select datasets that are relevant to the problems presented; have a variation of

contexts, sizes, and levels of complexity; that are accessible; and used by the

academic community.

• Define and implement trainable activation functions that are a variation of GLN

• Create neural network models for each type of problem with identical configurations

for each type of neural network.

• Train neural network models for each activation function evaluated using the same

data set and partitioning.

• Define evaluation metrics that allow a detailed analysis of the performance of networks

in terms of generalization capacity and precision.

• Perform statistical analyses to validate whether the observed differences are

significant.
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1.4 Chapter Preview

This work is divided into the following sections:

• Chapter 2 presents the fundamental concepts relating to the development of work.

Gives a brief introduction to artificial neural networks and the main networks used

in this work. It also presents the concept of activation functions and discusses the

activation functions used in this work.

• Chapter 3 presents the methodology carried out including the research project,

selection of samples, how data was collected, and finally the analysis of this data.

• Chapter 4 presents the results obtained in each of the two phases of this work.

• Finally, in Chapter 5, the conclusions of this study and suggestions for possible

future work are presented
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2 Literature review

This chapter will present the fundamental concepts related to the work. A brief

introduction to the emergence of artificial neural networks and the initial developments

that led to the creation of these powerful tools will be provided. Subsequently, the main

networks used in this study will be discussed. Finally, the activation functions, which

are crucial for the operation of these networks and the main focus of this work, will be

addressed.

2.1 Artificial neural networks

Artificial neural networks are computational models inspired by the functioning of

the human brain, aiming to simulate the interaction between neurons. One of the first

works that laid the foundation for the advancement of these networks was by McCulloch

and Walter Pitts (MCCULLOCH; PITTS, 2021) in 1943, where they proposed a simplified

model of an artificial neuron using electronic logic gates to represent a neuron. They

demonstrated that propositional or Boolean logic could address brain nerve activity. Fifteen

years later, Frank Rosenblatt developed the concept of the perceptron (ROSENBLATT,

1958), a very simple algorithm capable of learning to classify patterns, which it was a

precursor to artificial neural networks.

After a long period with few advancements, artificial neural networks regained

popularity in the 1980s and 1990s with the emergence of the backpropagation training

algorithm (RUMELHART et al., 1986). This algorithm, which uses error backpropagation

techniques to adjust the weights of the connections between neurons, enabled the

development of the Multi-layer Perceptron (MLP), an architecture with multiple layers

of neurons capable of learning to classify patterns in non-linearly separable sets. Various

types of problems were addressed using this new architecture. Since then, several others

have been developed, such as Recurrent Neural Network (RNN), Convolutional Neural

Networks (CNN), Long Short-Term Memory (LSTM), AutoEncoders (AE), and many

others.
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2.1.1 Multi-Layer Perceptron (MLP)

Also known as a universal approximator (DU; SWAMY, 2013), Multi-Layer

Perceptron (MLP) networks are formed by a simple structure composed of three main

types of layers: the input layer, the hidden layers (at least one), and the output layer, as

shown in Figure 1. Each layer is a grouping of artificial neurons that are not connected

but are connected to all the neurons of the previous layer (HAYKIN, 2000). These neurons

have the role of receiving the input signal or information, performing processing, and

passing it forward as an output value.

Figure 1 – Schematic representation of an Multi-Layer Perceptron (MLP).

The functioning of this neural network architecture is intrinsically based on the

backpropagation method for updating weights. Unlike the perceptron, where weight

updates occur simply and directly because there is only one layer,

wnew = wold + η × (y − ŷ)× x, (2.1)

here, wnew and wold are the new and old values of the weight, respectively. η is the learning

rate. y is the true class value. ŷ is the predicted class. x is the input.

In the MLP the update of weights is more complex due to the presence of one or

more hidden layers,

wnew = wold − η × ∂E

∂w
, (2.2)
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E is the cost or loss function. ∂E
∂w

is the gradient of the cost function with respect to the

weight.

One of the fundamental parameters for updating weights is the learning rate,

η (Equation (2.1)). This rate determines the size of the step taken in the direction

opposite to the gradient, directly affecting the speed and efficiency with which the model

learns (GOODFELLOW et al., 2016). Lower rate values make the convergence smoother

and more stable but slow down the process and make it more likely to get stuck in local

minima. On the contrary, higher rates make the model more unstable, possibly preventing

convergence to a global minimum, despite increasing the learning speed.

Another very important parameter is the initial value of the weights, w. There

are different weight initialization techniques, and the choice of technique affects the final

performance of the trained model and directly influences the speed at which the network

converges to a minimum of the loss function (NARKHEDE et al., 2021).

Initially, the importance of weight initialization was not understood, and weights

were randomly initialized. However, more modern techniques such as Glorot/Xavier

Initialization (GLOROT; BENGIO, 2010), which maintains the variance of gradients

across layers depending on the number of inputs and outputs of each layer, and He

Initialization (HE et al., 2015b), with an initialization technique focused on the RELU

function that maintains the variance depending on the number of inputs in the layer, have

emerged.

2.1.2 Autoencoders

An Autoencoder is a type of unsupervised learning algorithm that attempts to

learn the identity function by reproducing the same input data at the output of the neural

network (NG, 2010). At first, this may not seem interesting or useful, but the goal of this

type of network is ultimately to learn a compressed representation of the input data, used

to create a copy at the output with minimal information loss (GOODFELLOW et al.,

2016; HINTON; SALAKHUTDINOV, 2006). To achieve this, it features a structure where

the intermediate layers have fewer neurons than the first and last layers.

Figure 2 shows a generic architecture, similar to a horizontal hourglass, where

there is an initial layer with X neurons, a final layer with the same number of neurons as
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Figure 2 – Schematic representation of an Autoencoder, highlighting the encoder and
decoder submodels.

the input layer, and between these layers, one or more hidden intermediate layers with

a central layer known as the bottleneck, which has the fewest neurons. An Autoencoder

model comprises two submodels, the encoder and the decoder (GOODFELLOW et al.,

2016). The encoder submodel, located between the initial layer and the bottleneck layer,

is responsible for creating the compressed representation of the input data from the

correlations existing among these data (NG, 2010). Between the bottleneck layer and the

final layer, the decoder submodel is responsible for reconstructing this representation in

the output data.

2.1.3 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are a type of deep neural networks mainly

aimed at the area of computer vision. They are used very successfully in facial

recognition and object detection applications, important in robot and autonomous car

technologies, as well as in other areas such as natural language understanding and speech

recognition (LECUN et al., 2015). The main characteristic of CNNs networks is the use of

a mathematical operation called convolution.

This convolution operation is a specialized type of linear operation, used in at

least one of the layers, replacing general matrix multiplication (GOODFELLOW et al.,

2016). It works by sliding trainable filters, also known as kernels, over the input image,

see Figure 3, and at each position, performing a pointwise product between the filter and

the corresponding part of the image. The results are summed to produce a single value on

the feature map. This process is repeated for each filter, thus creating a complete set of
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feature maps.

Figure 3 – Schematic representation of an Convolutional Neural Networks (CNN).

This convolution process brings one of the great advantages of CNNs: the number of

parameters is drastically reduced since each neuron is connected only to a small region of the

input data (GOODFELLOW et al., 2016). Furthermore, the filters, or weights, are applied

to different parts of the input set and thus learn features that are location-independent.

This reduces the complexity of the model and generalizes well to new samples outside the

training set.

2.2 Activation Functions

As one of the fundamental elements that constitute a neuron in an artificial neural

network (HAYKIN, 2000), the activation functions are responsible for determining how

the weighted sum of input weights, along with bias, is transformed to define the output

value of the neuron.

Figure 4 – Artificial Neuron scheme.

A conventional neuron, see Figure 4, operates by multiplying a trainable weight

(weights), to each input value (inputs), summing all these products, and finally adding a

bias bias to this sum to apply the result as an argument for an activation function:
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output = f

(
n∑

i=1

Wi ×Xi − b

)
. (2.3)

Without activation functions in the neurons of an artificial neural network, the

output signals would merely be a linear function of the input data. Thus, the network

would lack the ability to learn complex patterns. By using nonlinear activation functions,

the network can learn complex patterns.

Activation functions can be divided into two categories: Fixed-shape activation

functions and trainable activation functions (APICELLA et al., 2021). The difference lies

in whether or not they have parameters that can be modified during network training.

Fixed functions do not have parameters, while trainable functions have parameters that

alter the function according to the data. Next, examples of activation functions from these

two classes used in this work will be presented.

2.2.1 Fixed activation functions

These are predefined activation functions that do not change their shape as the

network is trained (APICELLA et al., 2021).

2.2.1.1 Tanh

The hyperbolic tangent function, or tanh, is a scaled version of the sigmoid

function (GOODFELLOW et al., 2016), shaped like an S, see Figure 5, smooth, and

continuously differentiable. Historically, it became preferred over the sigmoid function

because it performed better. Nowadays, it is still widely used in artificial neural networks,

particularly in feedforward and recurrent neural networks.
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Figure 5 – Graphical representation of the hyperbolic tangent function in blue and its
derivative in red

This function returns values ranging from -1 to 1, providing a zero-centered output

distribution, which results in better convergence during the training phase. Mathematically,

it is defined as:

tanh(x) =
ex − e−x

ex + e−x
. (2.4)

This can also be expressed as:

tanh(x) = 2σ(2x)− 1, (2.5)

where (σ) is the sigmoid function 2.6,

σ(x) =
1

1 + e−x
. (2.6)

2.2.1.2 ReLU

Being one of the activation functions with the lowest computational cost and

addressing one of the biggest problems in deep neural networks, the vanishing gradient,

the ReLU (Rectified Linear Unit) function has stood out since its proposal in 2010 by
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Nair and Hinton when they used it in Restricted Boltzmann Machines (RBMs) (NAIR;

HINTON, 2010).

The ReLU function is defined as:

ReLU(x) = max(0, x), (2.7)

where x is the input to the activation function. The graph of the Relu function is presented

in Figure 18.

Figure 6 – Graphical representation of the ReLU function in blue and its derivative in red

The neuron is activated only if the input is positive; if it is negative, the output

is zero. This leads to the problem of the ”dead neuron”, which occurs when a neuron

consistently produces a zero output, rendering it incapable of learning during the training

period. Several activation functions have been derived from ReLU with the primary intent

of addressing this issue.

One of the main activation functions derived from Relu was the Leaky ReLU

function (XU et al., 2015). This brings a component α,

LeakyReLU(x) = max(αx, x) (2.8)

a generally very small positive coefficient (e.g., 0.01), when x is negative. Ensuring that

the gradient is never completely zero.
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Figure 7 – Leaky ReLU

2.2.1.3 Mish

The Mish activation function is one of the functions created with the aim of solving

ReLU problems. It has the properties of non-monoticity, smoothness, continuity, and

self-regularization (MISRA, 2020; GUSTINELI, 2022). It is mathematically defined by:

f(x) = x · tanh(softplus(x)) = x · tanh(ln(1 + ex)), (2.9)

where softplus(x) is a smooth approximation of the ReLU function, given by:

softplus(x) = ln(1 + ex). (2.10)

Very similar to ReLU in that it has no upper limit and, for most negative input

values, has a derivative of 0, it differs from it mainly in the smooth and continuous

transition of its derivative, and in the ability to generate negative values, as can be seen

in Figure 8.
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Figure 8 – Graphical representation of the Mish function in blue and its derivative in red

Despite having a higher computation cost, it has demonstrated superior performance

among the main activation functions for image classification problems (MISRA, 2020;

GUSTINELI, 2022).

2.2.1.4 Softmax

Softmax is an activation function mainly used in the last layer of neural networks,

especially to deal with multi-class classification problems. It is often used in conjunction

with the cross-entropy loss function, which quantifies the difference between predicted

probabilities and the true distribution (GOODFELLOW et al., 2016).

Unlike other activation functions that are applied to a single neuron, Softmax

is applied to an output vector, converting this vector of real values into a vector of

probabilities. The probabilities of each value are proportional to the relative scale of each

value in the vector and all output values sum to 1 (DU; SWAMY, 2013).

The mathematical formula for the Softmax function for a given vector (Z) of real

numbers is:

Softmax(zi) =
ezi∑K
j=1 e

zj

Here, e represents a mathematical constant approximately equal to 2.71828, zi is
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the input value for the current class being normalized, and K is the number of classes in

the multiclass classifier.

The denominator
∑K

j=1 e
zj is the sum of the exponential transformations of all

input values in the vector.

2.2.1.5 Sin

The sine activation function is a periodic function derived from the mathematical

trigonometric function. It is not an activation function that is normally used

in traditional neural networks and receives little attention from the scientific

community (PARASCANDOLO et al., 2017), although it has shown promise in several

applications, such as signal representation (MEHTA et al., 2021).

The low popularity of this function, and other similar sinusoidal functions, is

because training becomes more complex and with great difficulty in converging to

a global minimum because of its periodic nature, with the presence of infinite local

minima (PARASCANDOLO et al., 2017).

Figure 9 – Graphical representation of the sin function in blue and its derivative in red

2.2.1.6 Growing Cosine Unit (GCU)

The Growing Cosine Unit (GCU) activation function is also a periodic function

based on the trigonometric cosine function (NOEL et al., 2021). It is defined mathematically
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by:

C(x) = x · cos(x). (2.11)

Except for isolated points, the derivative is non-zero throughout its domain, as can

be seen in Figure 10. This fact minimizes the vanishing gradient problem (NOEL et al.,

2021; GUSTINELI, 2022)

Figure 10 – Graphical representation of the Growing Cosine Unit (GCU) in blue and its
derivative in red

In its experimental results, it obtained good results compared to already recognized

activation functions such as ReLU and Mish for evaluated image classification problems.

2.2.2 Trainable activation functions

These are activation functions that have adjustable parameters during the training

process (APICELLA et al., 2021). This allows these functions to change their own form

as they adapt to the data set, aiming to optimize the network’s performance.

These activation functions can be classified into two categories: parameterized

standard functions, which modify the classic activation functions by adding parameters

but maintaining their form, and functions based on ensemble methods, which combine
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several base (non-trainable) activation functions in a linear fashion (APICELLA et al.,

2021).

The idea of creating these functions that learn from the network began in the 1990s,

involving the parameterization of common activation functions, such as the sigmoid and

the hyperbolic tangent, with trainable parameters.

Following the trend of rectified activation functions to solve the limitations of ReLU,

Parametric ReLU (PReLU) (HE et al., 2015a) emerged in 2015, introducing a trainable

parameter for the negative slope.

Also motivated to overcome the problems of ReLU, Swish (RAMACHANDRAN et

al., 2017) emerged in 2017, a non-monotone and smooth function, defined as:

f(x) = x · σ(x), (2.12)

and which can be reparameterized to include a trainable parameter, β,

f(x; β) = βx · σ(x) (2.13)

When β is adjusted during training, it allows the activation function to behave

similarly to ReLU when β is large, or as a linear function when β is zero.

Motivated by the idea that fixed activation functions may not be ideal for all tasks

or data sets, (LIAO, 2020) proposes two approaches, one as an activation function as a

Fourier series, where the parameters of the series (amplitude, frequency and coefficients)

are trainable, and another as a linear combination of simple activation functions.

Reviving the hyperbolic tangent function, TanhSoft (BISWAS et al., 2021) emerged

in 2021, using variations of it with trainable parameters to control the shape of the curve.

Recent research such as the Learnable Extended Activation Function

(LEAF) (BODYANSKIY; KOSTIUK, 2023), 2023, which combines the properties of

squashing functions and rectifier units, APALU (Adaptive Piecewise Approximated

Activation Linear Unit) (SUBRAMANIAN et al., ), which combines characteristics of

linear and nonlinear functions and ErfReLU (RAJANAND; SINGH, 2024) which combines

the advantages of ReLU (Rectified Linear Unit) and the error function (erf), still as an

alternative to solve problems such as "dying ReLU", continue to explore this theme.
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2.2.2.1 Global-local neuron (GLN)

The GLN (Global-Local Neuron) activation function is an adaptive and trainable

function composed of two mathematical functions that complement each other, one global

and one local (FERREIRA et al., 2021), given by:

F (x) = (α.global(x) + (1− α).local(x))−Bias, (2.14)

where α and Bias are trainable weights and 0 ≤ α ≤ 1. At the implementation level,

α = sig(z), z ∈ R (2.15)

where sig(·) is the logistic sigmoid function 2.16, given by:

σ(x) =
1

1 + e−x
(2.16)

The GLN differs from the traditional model as it has two distinct activation

functions in its characteristics. These functions take as an argument the output produced

by the linear combination of weights, input data, and bias in a neuron and apply them to

a trainable weight α of complementary form as we see in Figure 11)

Figure 11 – Global-Local Neuron(GLN) scheme (FERREIRA et al., 2021).

In this way, the network itself, during the training process, adjusts the relative

importance of each of these components (the weight α ) for the final definition of the

activation function. Specifically, the same GLN activation function is used at each layer
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of the network. Therefore, since α and Bias are components of the activation function,

these parameters are the same for each layer.

By using activation functions with unique characteristics in the composition of the

GLN, such as the sine trigonometric function, and using the hyperbolic tangent function,

it is possible to identify two different characteristics, global (or general) and local (or

specific) respectively, or the combination of both with different degrees of importance.
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3 Methodology

3.1 Introduction

This research aims to evaluate the impacts of trainable and adaptable activation

functions, especially the Global-Local Neuron (GLN) and its variations, on the performance

of artificial neural networks in new types of problems. As already demonstrated in other

works, for regression and differential equation problems, by combining two activation

functions with distinct features, global and local, the robustness of the models in

generalizing and recognizing complex patterns is improved. We hypothesize that this same

approach also brings the same benefits to multiclass and image classification problems.

GLN was originally designed using the combination of the sine and hyperbolic

tangent functions, which capture the general and specific features, respectively. In

this work, while maintaining the characteristics that define GLN, we develop four new

variations with different compositions of activation functions in its structure: GLN-ReLU,

GLN-Mish, GLN-Growing Cosine Unit (GLN-GCU) and GLN-Growing Cosine Unit ReLU

(GLN-GCU-R).

The methodology was divided into two phases. In the first phase, we investigated

the performance of the original GLN in comparison with the standard hyperbolic sine and

tangent functions, training a Multi-layer Perceptron (MLP) Autoencoder neural network

to generate compressed images using the CIFAR10 dataset. These compressed images,

with reduced dimensionality, were used as input data for two classifiers, Wide Residual

Networks (WRN) (ZAGORUYKO; KOMODAKIS, 2016) and Support Vector Machines

(SVMs) (AWAD; KHANNA, 2015), verifying the accuracy in the classification of these

compressed images, and thus evaluating their ability to extract features by the autoencoder

networks (GOODFELLOW et al., 2016).

In the second phase we had access to the Santos Dumont supercomputer at LNCC,

greatly increasing our computational resources. We then expanded the study to include 4

variations of GLN, along with their constituent activation functions, ReLU, Mish, GCU,

Sine, Tanh. They were evaluated on a wide range of different datasets, Breast Cancer,

Iris, Wine, and Yeast for multiclass classification problems, and MNIST, CIFAR-10 and

Lung Colon Cancer for image classification problems.
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For further investigation, we varied the batch size and weight initialization

hyperparameters in both models used, MLP and CNN, to solve the respective problems

under analysis.

These neural network architectures employed were chosen because they are the

classic models, widely recognized and used for each type of specific problem addressed in

this research, without aiming to achieve the best absolute performance.

3.2 Research design

This research adopts an experimental quantitative approach to evaluate the impact

of GLN-type activation functions on the performance of artificial neural networks. This

design, which requires variable control and the use of meaningful metrics, was chosen

because it allows obtaining precise numerical data such as accuracy, loss, and convergence

speed, commonly used in research in this area, and allows a rigorous statistical comparison

between the activation functions in different configurations of neural network models.

To this end, several data sets were selected, which will be presented in the

following section, based on the types of problems addressed, image compression, multiclass

classification, and image classification. The preprocessing step of these data involved the

Min-Max normalization technique and the K-fold cross-validation method to divide the

data set into training, validation, and test sets.

After preprocessing, we designed and implemented specific artificial neural network

models to solve the proposed problems. Including Multi-layer Perceptrons (MLP),

Convolutional Neural Networks (CNN), and Wide Residual Networks (WRN). Then,

to obtain the data for analysis, several rounds of training and testing were performed by

changing the activation functions, and in the second phase of the experiment, the batch

size and weight initialization hyperparameters.

Given the stochastic nature of artificial neural networks, several experiments were

repeated to ensure reliable results. Finally, the performance of the neural networks,

measured through accuracy, loss value, and convergence speed, was compared between

the different configurations of the models and their activation functions using the

Kolmogorov-Smirnov statistical technique (KS-Test).
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3.3 Sample selection

This research used several public datasets, presented in the following subsections,

widely used in the scientific community and considered benchmarks in machine learning

and neural network research. These databases have a wide variety of domains and different

levels of complexity.

For multiclass classification problems, the Breast Cancer, Iris, Wine and Yeast

databases found in the UC Irvine machine learning repository were used. These datasets

offer a wide variety of samples, bringing several challenges in terms of separability, class

balance, and attribute correlation.

For image classification problems, the MNIST, CIFAR-10, and Lung Colon Cancer

image databases were used, which provided different levels of complexity in terms of image

resolution, class distribution, and domain-specific features.

The cross-validation method was employed on all datasets using the sklearn

library (PEDREGOSA et al., 2011). We applied the method with K = 5, that is,

we divided each dataset into five subgroups or folds. One of the folds was used as the test

set, while the other four were used as the training and validation sets. This process was

repeated 5 times, with each fold being used as the test set once. Performance metrics were

calculated by averaging the results of each process, providing more reliable estimates of

the model’s generalization ability.

3.3.0.1 Breast Cancer Wisconsin

The Breast Cancer Wisconsin database, created by Wolberg in 1992, is a dataset

currently comprising 569 samples representing cases of benign and malignant breast tumor

diagnoses, therefore with two classes. Each sample has 30 numerical attributes calculated

from digitized images of the breast tissue, including the mean tumor radius, texture,

perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and

fractal dimension.(WOLBERG WILLIAM; STREET, 1995)
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3.3.0.2 Iris

The Iris database, created by Fisher in 1936, is a dataset consisting of 150 samples

from three distinct classes, each with the same quantity as the others, referring to a type

of Iris plant: Iris setosa, Iris virginica, and Iris versicolor. Each sample has 4 numerical

attributes: sepal length, sepal width, petal length, and petal width.

A characteristic feature is that one of the 3 classes is linearly separable from the

other two, but these are not linearly separable from each other. It is one of the oldest

databases used in the literature on multi-class classification methods and is widely used

primarily in the fields of statistics and machine learning (FISHER, 1988).

3.3.0.3 Yeast

The Yeast database is a dataset composed of 1484 samples, with 8 attributes each

that represent the subcellular localization of proteins in Gram-negative bacteria. They are

divided into 4 classes based on the subcellular localization of the proteins: in the cytoplasm,

in the inner membrane (cytoplasmic), in the periplasm or in the outer membrane (NAKAI,

1996; HORTON; NAKAI, 1996). This dataset presents a superior challenge due to the

imbalance and overlap between classes (NAKAI; KANEHISA, 1991).

3.3.0.4 Wine

The Wine database is a dataset consisting of 178 samples of wines grown in the

same region of Italy but derived from three different cultivars. It has unequal proportions of

samples for the 3 varieties, and each sample has the following chemical attributes: Alcohol,

Malic Acid, Ash, Alkalinity of ash, Magnesium, Total phenols, Flavonoids, Non-flavonoid

phenols, Proanthocyanidins, Color intensity, Hue, OD280/OD315 of diluted wines, and

Proline (AEBERHARD; FORINA, 1991).

3.3.0.5 MNIST

The MNIST, Modified National Institute of Standards and Technology database,

is a collection of images of handwritten digits from 0 to 9, consisting of a training set of
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60,000 images and a test set of 10,000 images. All the images have been standardized,

centered, and formatted into a square shape with a resolution of 28 x 28 pixels and are in

grayscale.

It is one of the oldest and most used image databases for image classification, but

it does not have a very high complexity. As a result, it is relatively simple to achieve low

error rates with current classification models.

Figure 12 – Sample images from the MNIST database used for evaluating the impact of
GLN-type activation functions on image classification accuracy.

3.3.0.6 CIFAR-10

The CIFAR-10 (KRIZHEVSKY; HINTON, 2009) image bank was chosen, which has

60 thousand color images in its repository classified into 10 different categories, automobile,

bird, plane, cat, etc. These images have a resolution of 32x32 pixels with 3 RGB layers

and are divided into 50 thousand training images and 10 thousand for testing. Of these

training courses, 5,000 were taken for validation. These images, originally represented by

a three-dimensional vector, were resized to become a linear array with 3072 input data to

feed the neural network models.
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Figure 13 – Sample images from the CIFAR-1 database used for evaluating the impact of
GLN-type activation functions on image classification accuracy.

3.3.0.7 LC25000

The Lung and Colon Cancer Histopathological Image database is a collection of

histological entities composed of five classes of images: colon adenocarcinoma, benign

colonic tissue, lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue.

It includes a total of 25,000 color images with a resolution of 768x768 pixels.

Figure 14 – Sample images from the Lung and Colon Cancer Histopathological Image
database used for evaluating the impact of GLN-type activation functions on

image classification accuracy.
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3.4 Data collect

The objective of this phase is to collect data on the values of accuracy, loss, and

convergence speed (in terms of the number of training epochs) for the test set in the process

of evaluating the models. For this purpose, three specific neural network models were

created and trained on different problems to evaluate the performance of the activation

functions based on the generated data. In the first phase of the research, an MLP

Autoencoder Network was used for the image compression problem, and in the second

phase, an MLP Network for the multi-class classification problem and a CNN for the

image classification problem.

Figure 15 – Illustration of the transformation process of the Cifar10 dataset into a
one-dimensional vector for training in an autoencoder network

In the first phase, using the CIFAR10 image dataset, five models with a Multi-layer

Perceptron (MLP) Autoencoder neural network architecture were created, each with a

different bottleneck layer size, for generating compressed images. See Figure 15 which

illustrates this phase. Considering the resolution of CIFAR10 images, which is 32x32

pixels, the following five variations of this layer size with their respective compression

rates were chosen: 24x24 (25%), 20x20 (38%), 16x16 (50%), 12x12 (63%), and 8x8 (75%).

The sizes of the second and fourth layers of this model were scaled to have a uniform rate

of compression from the input layer to the bottleneck layer, and decompression from the

bottleneck layer to the output layer. Thus, since the images in ‘one-dimensional format’

have 3072 values, 32x32x3, the final architectures were:

• 1º model: 3072 −→ 2400 −→ 1728 −→ 2400 −→ 3072

• 2º model: 3072 −→ 2136 −→ 1200 −→ 2136 −→ 3072
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• 3º model: 3072 −→ 1920 −→ 768 −→ 1920 −→ 3072

• 4º model: 3072 −→ 1752 −→ 432 −→ 1752 −→ 3072

• 5º model: 3072 −→ 1632 −→ 192 −→ 1632 −→ 3072

All these models were trained using the Adam optimization algorithm (KINGMA;

BA, 2014) with a learning rate of 0.0001 and the mean squared error (MSE) function

as the metric and loss function, one of the most common loss functions for training

autoencoders since the purpose is to reconstruct the input data. Training was performed

for up to 1000 epochs and a stopping criterion was defined to interrupt training if there

was no improvement of at least 0.00001 in the loss value of the validation set during 100

consecutive epochs.

Figure 16 – Illustration of the transformation process of the Cifar10 dataset with 10
thousand test images to a one-dimensional vector for generating compressed
images in the ENCODER for classification in the WRN and SVM models

After training, compressed images were created using the Encoder submodel of

the Autoencoder network model in the 5 bottleneck variations and for the 3 activation

functions evaluated in this phase. Thus, a new dataset based on CIFAR10 with reduced

dimensionality was created. This new dataset was classified using a Width Residual

Neural Network (WRN) with network depth set to 40 and broadening factor set to 4.

The experiments were trained for 200 epochs using the SGD optimizer with Nesterov

momentum (BENGIO et al., 2013) and smoothed cross-entropy as the loss function. The

initial learning rate was set to 0.1, with momentum of 0.9, weight decay of 0.0005, and

minibatch size of 1024. The learning rate was reduced by 0.2 at epochs 60, 120, and 160.

Additionally, we also classified the same compressed images using the Support

Vector Machine (SVM) classification algorithm, comparing the classification efficiency of
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both methods between the different activation functions and image compression levels.

See Figure 16 which illustrates this phase.

In the second phase, for multiclass classification problems using the Breast Cancer,

Iris, Wine and Yeast databases, we used MLP neural network models with 3 hidden layers,

with 10 neurons in the first layer and 5 in the intermediate layer. In the last layer, the

number of neurons varied according to the number of classes in each database. Similarly,

for the Yeast database, since it is more complex, we used the same type of MLP neural

network with 4 hidden layers with 100 neurons each, except for the last one with 10. The

softmax activation function was used in all output layers.

Between the dense layers of these models, a Batch Normalization layer and a

Dropout layer with a value of 0.3 were included. The learning rate was set at 0.001. The

loss function used and the evaluation metric were respectively "Categorical Crossentropy"

and "Categorical Accuracy" for the Breast Cancer, Iris, Wine and Yeast databases.

All MLP models were trained for up to ten thousand epochs. A stopping criterion

was defined to interrupt training if there was no improvement of at least 0.0001 in the

validation set loss value during 100 consecutive epochs for all models. A learning rate

reduction by a factor of 0.1 was also established if no improvement occurred in at least

500 epochs in the validation set loss value.

For image classification tasks, a Convolutional Neural Network (CNN) based on

the VGG19 architecture was created for training and obtaining data from all image

datasets, MNIST, CIFAR10 and Lung Colon Cancer. The loss function used and the

evaluation metric were respectively "Categorical Crossentropy" and "Accuracy". After

initial performance tests with all activation functions, the optimization method chosen

was Stochastic Gradient Descent (SGD) because it obtained better convergence in all

activation functions. The other optimizers evaluated were: ADAM and RMSProp.

A maximum number of 500 epochs was established for training and an early stopping

criterion was defined if there was no improvement of at least 0.0001 in the loss value of the

validation set during 30 consecutive epochs. A reduction in the learning rate by a factor

of 0.1 was also established with the following conditions:

• After more than 35 epochs for the first reduction;

• After more than 55 epochs for the second reduction;

• After more than 70 epochs for the third and final reduction.
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All parameters of the neural network were kept constant except the activation

functions used for evaluation in this research. However, in the second phase of the

experiment, the batch size value and the weight initialization methods were varied in

order to analyze how these factors can impact the performance of the activation functions,

ensuring a robust evaluation in different model configurations. The batch size values

applied were 8 and 32 for the multiclass classification problems and 32 and 128 for the image

classification problems. The initialization methods used were: Glorot normal (GLOROT;

BENGIO, 2010), He normal (HE et al., 2015a).

An important aspect to consider when working with neural networks is their

stochastic nature (BISHOP, 1994). This means that the data obtained can vary with each

execution, despite using the same dataset and the same initial parameters. This is due to

several reasons, among the main ones, the randomness in the initialization of weights and

also the stochastic nature of optimizers like SGD, ADAM, and RMSProp.

Therefore, to ensure more reliable measures of the models’ performance, several

rounds of training and testing were carried out for each activation function and for

each variation of the model parameters. In the first phase of the experiment with the

autoencoder networks, for each model configuration and for each activation function, 48

rounds were conducted. In the second phase, for all multi-class classification problems,

the number of rounds was 50, since the execution of the models requires much less time.

However, a smaller number of samples were performed for the image classification problems

since the training time is quite long. In this case, the number of rounds defined was 30,

the minimum amount necessary to ensure that this sample distribution is approximately

normal, according to the Central Limit Theorem (KWAK; KIM, 2017).

The objective of these experimental configurations and the choice of neural network

models used was not to achieve the best results for classifying these data nor to be the

state-of-the-art for these problems, but rather to use already established models and basic

configurations sufficient to provide consistent and comparative insights into the effects of

the different activation functions studied.
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3.5 Data analysis

The analysis focused on comparing the performance of the networks using different

activation functions, measured by the values of accuracy, loss, and convergence speed (in

terms of the number of training epochs). The KS test (Kolmogorov-Smirnov test) was

used to compare independent samples and verify if they were drawn from populations

with identical distributions. This test is useful insofar as we can determine whether the

probability distributions obtained from the experiment results, for each activation function,

can be considered from different distributions, and thereby the possibility of identifying

a better performance or not. The analysis was conducted using Python software, with

libraries such as NumPy, Pandas, SciPy, and Scikit-learn.
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4 Results

In this chapter, we will show the results after training all models with the different

activation functions. Initially, we will present the results from the first phase, which were

presented and published at the 8th IEEE Latin American Conference on Computational

Intelligence (IEEE LA-CCI 2022) (DELGADO; FERREIRA, 2022). Then, we will present

the results from the second phase of the research. We will divide the results into two

groups of problems: multiclass classification and image classification. The confusion matrix

data are presented in the appendix.

4.1 First Phase Results

4.1.1 First step - Autoencoder training

Table 1 presents the results of tests performed for each variation in the number

of neurons in the bottleneck layer, always for 48 experimental repetitions. The average

loss value (MSE) for the image data of the training (Tr), validation (Val) , test (Te) and

Epoch sets is presented. Complementing the information in Table 1, we present the data

in boxplot format in Figure 17.

Figure 17 – Box-Plot of the loss for the bottleneck layer for each number of neurons
experimented (48 experiments), outliers have been removed for better

visualization
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Table 1 – Mean values of the metrics for each bottleneck layer evaluated in all models,
GLN and Tanh and Sine— results of the training (Tr), validation (Val) and

Test (Te) sets. The best results are highlighted in bold-face.

Bottleneck Metric GLN Tanh Sine

Tr_loss 0.000621 0.000330 0.000486

1728 Val_loss 0.000719 0.000366 0.000515

Te_loss 0.000827 0.000474 0.000608

Epoch 192 333 204

Tr_loss 0.000645 0.000426 0.000519

1200 Val_loss 0.000737 0.000476 0.000549

Te_loss 0.000873 0.000554 0.000647

Epoch 184 396 211

Tr_loss 0.000819 0.000756 0.000695

768 Val_loss 0.000909 0.000824 0.000737

Te_loss 0.000987 0.000900 0.000788

Epoch 218 361 341

Tr_loss 0.001547 0.001627 0.001549

432 Val_loss 0.001672 0.001699 0.001612

Te_loss 0.001765 0.001806 0.001670

Epoch 260 335 420

Tr_loss 0.003640 0.003823 0.003734

192 Val_loss 0.003866 0.003908 0.003804

Te_loss 0.003982 0.003999 0.003873

Epoch 252 431 309
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As seen in Table 1, which shows the average loss values for each bottleneck value,

it can be seen that the model that used Tanh’s function has the lowest loss values for not

very tight bottlenecks. From 50% of compression, the model with the periodic sine function

starts to have the lowest loss values along with the GLN in the highest compressions for

the training set. We will see later that this fact did not reflect on the performance of

the GLN in the classification test. On the other hand, in all variations of the bottleneck,

the model with GLN presents the best performance in terms of speed of convergence.

Reducing the convergence time in relation to the second best result between 6% and 36%

approximately.

Figure 18 – Box-Plot of the α weight values for the first hidden layer and the bottleneck
layer for each number of neurons experimented (48 experiments).

The value of the α weight was also evaluated. This weight shows the importance

of each component of the activation function in the GLN. If equal to 1, it means that

the neuron has the characteristic totally global (Sin function), and if equal to 0, totally

local (Tanh function). For intermediate values, a mixture of these characteristics. As

can be seen in Figure 18, the greater the compression, the greater the importance given

to the global characteristic learned in the bottleneck layer. This shows that when the

information compression is strong (few neurons in the bottleneck layer), the behavior

is adapted for the characterization of the information through the global function. As

the compression decreases (the number of neurons in the bottleneck layer increases), the

network starts to increase the importance of the local component of the activation function,

representing the total information with greater relevance to the details and resulting in
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better auto-associative performance. In this sense, it is possible to prove the adaptation

learned by the activation function during the training of the neural network.

4.1.2 Second step - Classification of the images compressed by the

Autoencoder

Table 2 – Mean values of the accuracy for each bottleneck layer evaluated in all models,
GLN and Tanh and Sine. The best results are highlighted in bold-face.

Bottleneck WRN SVM

Tanh GLN Sine Tanh GLN Sine

1728 36.45% 39.09% 32.96% 45.22% 42.49% 45.70%

1200 35.11% 38.24% 35.46% 45.33% 43.51% 45.83%

768 35.25% 35.00% 35.17% 45.63% 45.66% 46.85%

432 34.80% 33.24% 33.32% 45.80% 47.24% 46.84%

192 38.53% 35.86% 33.60% 47.63% 48.25% 48.89%

Figure 19 – Box-Plot of the accuracy for the bottleneck layer for each number of neurons
experimented (48 experiments) using the WRN neural network for

classification

As a basis for comparison, we evaluated the accuracy of the WRN used, with the
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same set of 10,000 CIFAR10 test images, for training, validation, and testing. Obtaining

an average accuracy of 71.7%. Remember that the second phase used these same 10

thousand images, but compressed.

The performance of GLN in the compressed layers of 1728 and 1200 stands out,

as we can see in Table 2 and Figure 19. It obtained a performance of 7.2% superior to

the second place when the bottleneck layer had 1728 neurons and 7.8% superior with

1200 neurons. The model with the Tanh activation function performed better in the

classification in the most compacted layer with 192 neurons followed by the GLN, where,

despite the natural tendency, to increase the weight of the global component for greater

compactions, as we can see in Figure 18, GLN increased the importance of the first hidden

layer to the local component and thus achieved a classification performance close to that

obtained in the Tanh model. Thus demonstrating the ability to adapt and take advantage

of the best features of both in different situations. In the other bottleneck layers, despite

the different average values presented, it is not possible to say that they are of different

distributions by the KS test performed, as will be shown next.

Table 3 – KS test results for loss function (MSE) and accuracy values

bottleneck

GLN-Tanh GLN-Sin Tanh-Sin

loss accuracy loss accuracy loss accuracy

Statistically p-value Statistically p-value Statistically p-value Statistically p-value Statistically p-value Statistically p-value

Similar Similar Similar Similar Similar Similar

1728 No 2.88E-19 No 7.43E-12 No 2.05E-10 No 2.88E-19 No 1.00E-04 No 2.66E-06

1200 No 1.89E-20 No 7.44E-11 No 2.05E-10 No 2.68E-08 No 0.017902 No 0.036121

768 No 0.000955 Yes 0.250293 No 3.70E-18 Yes 0.960171 No 7.43E-12 Yes 0.692660

432 Yes 0.522069 Yes 0.058763 No 8.28E-07 Yes 0.692660 No 4.25E-09 No 0.002134

192 No 0.004544 No 0.000165 No 0.000955 No 0.000407 No 4.25E-09 No 4.02E-16

The bi-sample Kolmogorov–Smirnov (KS) test was performed in order to assess

whether the three architectures (the architecture with GLN and the architecture with Tanh

and Sine) are statistically similar for each of the metric values, evaluated in relation to the

bottleneck size. The bisample KS test is a nonparametric test used to compare two-sample

empirical distribution functions (GIBBONS; CHAKRABORTI, 2014). The null hypothesis

is that the two population distributions are identical, in other words, two samples from the

same population. The alternative hypothesis is that the two distributions sampled come

from different population distributions. We apply this test to the loss function values

obtained in the first phase with the test images and for the accuracy value obtained in the
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second phase in the classification of compressed images and in the different arrangements

of the activation functions studied.

According to Table 4, where we applied the KS test with GLN and Tanh, GLN and

Sine, and Tanh and Sine, the null hypothesis was not rejected for the loss values of the

models with GLN and Tanh in the bottleneck layer, 432, and for the accuracy values and

in layers 768 and 432. Indicating that they may be one of the same probability distribution.

For all other experiments, the null hypothesis was rejected at the 5% significance level.

This test validates the results presented above.

Figure 20 – Box-Plot of the accuracy for the bottleneck layer for each number of neurons
experimented (48 experiments) using the SVM method for classification.

However, when SVM was used for classification, GLN was better when the bottleneck

layer was more compacted, Table 2 and Figure 20. The accuracy value in the SVM with

the complete set of the CIFAR10 image bank was 46%.

We also present in the Table 3 the classification report obtained with the confusion

matrix, normally used to evaluate the performance of classifiers in data sets. These data

confirm the superior performance of GLN for compression values up to 50%.
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Table 4 – Classification Report Confusion Matrix

act metric 1728 1200 768 432 192

acc m avg w avg acc m avg w avg acc m avg w avg acc m avg w avg acc m avg w avg

precision 39.2% 39.7% 38.3% 38.6% 35.1% 35.6% 33.3% 33.8% 35.9% 37.1%

GLN recall 38.8% 39.1% 38.1% 38.2% 35.0% 35.0% 33.1% 33.2% 35.5% 35.9%

f1-score 39.1% 38.9% 39.3% 38.2% 38.2% 38.4% 35.0% 34.9% 35.2% 33.2% 33.1% 33.4% 35.9% 35.5% 36.3%

precision 36.5% 36.9% 35.7% 36.0% 35.3% 35.7% 34.9% 35.6% 38.5% 39.3%

Tanh recall 36.4% 36.4% 35.5% 35.6% 35.3% 35.3% 34.7% 34.8% 38.1% 38.5%

f1-score 36.4% 36.3% 36.6% 35.6% 35.5% 35.7% 35.3% 35.2% 35.4% 34.8% 34.6% 35.0% 38.5% 38.2% 38.8%

precision 36.5% 36.7% 36.4% 36.9% 33.0% 33.5% 34.5% 34.9% 31.5% 32.4%

Sin recall 36.4% 36.4% 36.0% 36.3% 32.7% 32.9% 34.4% 34.4% 31.2% 31.4%

f1-score 36.4% 36.3% 36.4% 36.3% 36.1% 36.5% 32.9% 32.7% 33.1% 34.4% 34.3% 34.5% 31.4% 31.1% 31.7%

4.2 Second Phase Results

4.2.1 Multiclass Classification Problems

4.2.1.1 Breast Cancer

Tables 5, 6, 7, 8 and 9 present the results, for the Breast Cancer dataset, of the

models that trained with the activation functions respectively: GLN and the functions

that compose it, the Tanh and Sine functions; GLN-ReLU and the functions that compose

it, the ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish

and Sine function; GLN-GCU and the functions that compose it, the Tanh function and

GCU; GLN-GCU-R and the functions that compose it, the ReLU and GCU function. The

average accuracy values for the test data, their maximum and minimum values and the

standard deviation are presented. It also presents the loss values for this same data set

and its standard deviation, the value of the time, where the lowest loss value was obtained

for the validation set, and its standard deviation. Precision, recall and f1-score values are

also presented. These results were grouped by the parameter variations performed: batch

size, 8 and 64, and the two initialization methods tested, Glorot Normal and He Normal.

To provide a summary view of the data distribution and complement the information

in these tables, we present the accuracy data in bloxpot format in the Figures 21, 23,

25, 27, 29. Each graph represents the distribution of accuracy results for each activation

function tested in the 4 parameter variations performed.

The α values per layer of the neural network are also presented in bloxpot format

in the Figures 22, 24, 26, 28 and 30.



64

Table 5 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Breast Cancer -

GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

8 GL

97.35 1.01 100.00 95.61 0.08 0.03 179.06 31.61 97.38 97.35 97.35

Sin 96.49 1.20 99.12 94.74 0.10 0.02 239.38 74.28 96.61 96.49 96.51

Tanh 97.68 1.00 100.00 95.61 0.08 0.03 186.72 37.04 97.7 97.68 97.68

GLN

8 HE

97.22 1.02 99.12 94.74 0.09 0.03 183.00 27.83 97.24 97.22 97.23

Sin 96.93 0.97 99.12 93.86 0.09 0.02 231.06 50.18 97.0 96.92 96.94

Tanh 97.54 0.87 99.12 95.61 0.09 0.03 181.34 37.82 97.55 97.54 97.54

GLN

64 GL

97.33 0.92 99.12 95.61 0.09 0.02 201.98 23.25 97.35 97.33 97.33

Sin 97.01 1.11 100.00 92.98 0.09 0.03 231.90 67.84 97.05 97.01 97.02

Tanh 97.33 0.87 99.12 94.74 0.08 0.02 206.38 36.90 97.35 97.33 97.33

GLN

64 HE

97.08 1.03 99.12 94.69 0.09 0.02 214.98 42.68 97.1 97.08 97.09

Sin 96.54 1.14 98.25 92.04 0.10 0.03 291.08 71.38 96.61 96.54 96.55

Tanh 97.24 1.02 99.12 94.74 0.08 0.02 199.54 35.60 97.26 97.24 97.25

Figure 21 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Breast Cancer - GLN/Tanh/Sine)

As can be seen in Table 5 and Figure 21, the hyperbolic tangent function, in

the batch variation equal to 8 and GL initialization method, was the one that obtained

the highest average accuracy value, 97.68, between the GLN and Sine functions. This

performance was also reflected in the precision, recall and f1-score metrics. However, as we

see in Table 10, the model with the GLN function has a statistically similar distribution

to the model with the Tanh function in all variations. It is also possible to notice that the

GLN function performs slightly better using the GL initialization method regardless of the

batch size of this experiment. While the Tanh function shows slightly better performance

at batch size 8 regardless of the initialization method. For the sine function, it is not

possible to perceive any preference here.
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Figure 22 – Box-Plot of weight values α per layer (50 experiments) [Breast Cancer - GLN]

It is also observed that all activation functions managed to reach the maximum

value of 100% for this data set. The Tanh and GLN functions arrived at this value with

the parameters 8 GL and the sine function, 64 GL. The GLN function stands out in terms

of convergence speed. It obtained the lowest convergence value, 179 epochs and lowest

standard deviation, 31, for variation 8 GL, where the best results were obtained for the

accuracy of GLN and Tanh. Indicating greater stability.

The distribution of α values can be seen in Figure 22. It can be seen that the values

of α tend to move towards the activation function with the best performance. These values

tend to be below 0.5 for batch value 8, where the tanh function has better performance,

and close to 0.5, for batch value 64, where the sine function has performance closer to that

obtained by the tanh function.

Figure 23 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Breast Cancer - GLN-ReLU/ReLU/Sine)
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Table 6 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Breast Cancer -

GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

8 GL

97.42 0.89 99.12 94.74 0.08 0.02 177.40 39.94 97.44 97.42 97.42

ReLU 97.33 0.83 99.12 95.61 0.09 0.02 230.48 77.13 97.37 97.33 97.34

Sin 96.49 1.20 99.12 94.74 0.10 0.02 239.38 74.28 96.61 96.49 96.51

GLN-ReLU

8 HE

97.45 0.71 99.12 95.61 0.08 0.02 179.66 40.17 97.47 97.45 97.46

ReLU 97.22 0.78 99.12 95.61 0.09 0.02 257.54 60.24 97.26 97.22 97.23

Sin 96.93 0.97 99.12 93.86 0.09 0.02 231.06 50.18 97.0 96.92 96.94

GLN-ReLU

64 GL

97.26 0.95 99.12 95.58 0.08 0.02 206.96 35.42 97.29 97.26 97.27

ReLU 97.17 0.85 98.25 95.61 0.09 0.02 238.96 41.48 97.21 97.17 97.18

Sin 97.01 1.11 100.00 92.98 0.09 0.03 231.90 67.84 97.05 97.01 97.02

GLN-ReLU

64 HE

97.26 0.95 99.12 95.58 0.09 0.03 211.44 38.94 97.28 97.26 97.26

ReLU 97.22 0.80 98.25 95.58 0.08 0.02 257.72 45.06 97.25 97.22 97.23

Sin 96.54 1.14 98.25 92.04 0.10 0.03 291.08 71.38 96.61 96.54 96.55

Figure 24 – Box-Plot of weight values α per layer (50 experiments) [Breast Cancer -
GLN-ReLU]

In Table 6, where the results for the GLN-ReLU and ReLU and Sine functions

are presented, the GLN-ReLU function stands out, obtaining the highest accuracy value,

97.45. This performance was also reflected in the precision, recall and f1-score metrics. At

the 5% significance level, the results of the KS test, presented in Table 10, demonstrate

that the GLN-ReLU and ReLU Functions are similar in their distributions in all tested

variations. No significant difference is noted from the results presented in Table 6 and

Figure 23 for the different batch size variations and for the initialization method, although

the Normal HE initialization method is known to be more effective for ReLU (HE et al.,

2015a) functions. The sine function was the only one that presented the highest maximum

value of 100%, in the batch variation equal to 64 and initialization of the Glorot Normal
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weights.

The lowest epoch value, 177, was obtained by the GLN-ReLU function as shown

in Table 6. This result was almost 25% better than that obtained by the second best

convergence time obtained by the ReLU function, which required 230 epochs. GLN-ReLU

was the one that presented the best stability in the convergence time, as can be seen in the

standard deviation values for the distribution of values for the period in the same table.

The distribution of α values is shown in Figure 24. In the first layer of the

model, the values of α approached the global sine function, without much difference in the

distributions for the 4 variations. While for the second layer, there was a slight difference

according to the batch size value and the initialization method. For batch value 8 and He

Normal method, α tends to slightly choose the sine function.

Table 7 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Breast Cancer -

GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

8 GL

97.79 0.89 99.12 95.61 0.08 0.02 175.42 40.88 97.81 97.79 97.79

Mish 97.44 0.83 99.12 95.61 0.08 0.02 238.60 53.28 97.48 97.43 97.44

Sin 96.49 1.20 99.12 94.74 0.10 0.02 239.38 74.28 96.61 96.49 96.51

GLN-Mish

8 HE

97.61 0.99 100.00 95.61 0.08 0.02 181.44 39.85 97.62 97.61 97.61

Mish 97.54 0.79 99.12 96.49 0.08 0.02 244.54 54.39 97.58 97.54 97.55

Sin 96.93 0.97 99.12 93.86 0.09 0.02 231.06 50.18 97.0 96.92 96.94

GLN-Mish

64 GL

97.21 1.10 98.25 94.74 0.08 0.02 203.10 35.97 97.23 97.21 97.21

Mish 97.33 0.99 100.00 95.61 0.08 0.02 250.58 49.85 97.37 97.33 97.34

Sin 97.01 1.11 100.00 92.98 0.09 0.03 231.90 67.84 97.05 97.01 97.02

GLN-Mish

64 HE

97.15 1.09 99.12 93.86 0.09 0.02 225.64 51.46 97.18 97.15 97.16

Mish 97.28 0.91 99.12 95.61 0.08 0.02 251.54 48.13 97.32 97.28 97.28

Sin 96.54 1.14 98.25 92.04 0.10 0.03 291.08 71.38 96.61 96.54 96.55

The GLN-Mish function obtained the highest accuracy value compared to the

functions that compose it, Mish and Sine, as can be seen in Table 7. It obtained an

average accuracy of 97.79 This better performance was also identified in the precision, recall

and f1-score metrics. At the 5% significance level, the results of the KS test, presented in

Table 10, demonstrate that the GLN-Mish and Mish Functions are statistically similar in

all tested variations. As was identified for the GLN-Mish and Mish functions, the different

batch sizes and initialization methods used did not significantly affect the results, as can

be seen in Table 7 and Figure 25. All 3 activation functions reached the maximum result

of 100.
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Figure 25 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Breast Cancer - GLN-Mish/Mish/Sine)

Figure 26 – Box-Plot of weight values α per layer (50 experiments) [Breast Cancer -
GLN-Mish]

The lowest average value for the convergence time, 175, was obtained by the

GLN-Mish function as shown in Table 7. This result was almost 25% better than that

obtained by the second best convergence time obtained by the Sine function, which

presented an average value of 231 epochs. GLN-Mish also presented the best stability in

the convergence time, as can be seen in the standard deviation values for the distribution

of values for the time in the same table.

The distribution of α values is presented in Figure 26 and presents a very similar

result to that obtained by the α values for the GLN-ReLU function. In the first layer of

the model, the values of α approached the global sine function, without much difference

in the distributions for the 4 variations. While for the second layer, there was a slight

difference depending on the batch size value. For batch value 8, α tends to slightly choose
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the mish function, while α tends to choose the sine function for value 64.

Table 8 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Breast Cancer -

GLN-GCU/Tanh/GCU)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

95.08 1.93 98.25 90.35 0.16 0.06 333.08 111.83 95.23 95.08 95.11

GLN-GCU 96.70 2.58 99.12 80.70 0.10 0.05 325.40 91.78 96.75 96.7 96.71

Tanh 97.68 1.00 100.00 95.61 0.08 0.03 186.72 37.04 97.7 97.68 97.68

GCU

8 HE

94.61 3.37 99.12 74.56 0.18 0.07 431.64 144.39 94.8 94.6 94.64

GLN-GCU 96.77 1.29 99.12 92.98 0.09 0.03 372.42 109.04 96.82 96.77 96.78

Tanh 97.54 0.87 99.12 95.61 0.09 0.03 181.34 37.82 97.55 97.54 97.54

GCU

64 GL

94.01 2.12 98.23 86.84 0.18 0.08 496.18 164.08 94.27 94.01 94.06

GLN-GCU 94.94 2.99 98.25 78.07 0.14 0.07 395.74 131.21 95.07 94.94 94.97

Tanh 97.33 0.87 99.12 94.74 0.08 0.02 206.38 36.90 97.35 97.33 97.33

GCU

64 HE

87.95 7.74 96.49 67.54 0.30 0.14 578.26 217.79 89.29 87.94 88.22

GLN-GCU 94.06 2.58 98.23 86.84 0.17 0.06 530.44 149.73 94.26 94.06 94.1

Tanh 97.24 1.02 99.12 94.74 0.08 0.02 199.54 35.60 97.26 97.24 97.25

Figure 27 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Breast Cancer - GCU/GLN-GCU/Tanh)

As shown in Table 8 and Figure 27, the Tanh function performed best in relation to

the GLN-GCU and GCU activation functions. Except for the 8 HE variation, the KS test

presented in Table 10 shows that the Tanh and GLN-GCU functions are not statistically

similar. The model with the GCU function presented the worst performance mainly

for the larger batch size and for the normal HE initialization method. This parameter

configuration led to a very accentuated dispersion, negatively influencing the GLN-GCU

function. Although this managed to present greater stability compared to the GCU

function. It is also noted that there was a large difference in the rate of convergence
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Figure 28 – Box-Plot of weight values α per layer (50 experiments) [Breast Cancer -
GLN-GCU]

between the Tanh functions and the others. Tanh is the most efficient in this aspect as

well.

We can see from Figure 28 that the values of α in the first layer for the batch size

equal to 8 are very close to 0.2, indicating a greater contribution to the hyperbolic tangent

function. While for size 64 it is close to 0.6, indicating a slight prevalence for the global

Increasing Cosine function. In the second layer of the model, the value of α presents a very

large dispersion, indicating a certain instability in the choice of the predominant function,

especially for batch size equal to 8.

Table 9 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score.(Breast Cancer -

GLN-GCU-ReLU/ReLU/GCU)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

95.08 1.93 98.25 90.35 0.16 0.06 333.08 111.83 95.23 95.08 95.11

GLN-GCU-ReLU 96.87 1.19 99.12 92.11 0.09 0.03 286.30 70.54 96.93 96.87 96.88

ReLU 97.33 0.83 99.12 95.61 0.09 0.02 230.48 77.13 97.37 97.33 97.34

GCU

8 HE

94.61 3.37 99.12 74.56 0.18 0.07 431.64 144.39 94.8 94.6 94.64

GLN-GCU-ReLU 96.86 1.30 99.12 93.86 0.10 0.04 334.20 107.32 96.91 96.85 96.87

ReLU 97.22 0.78 99.12 95.61 0.09 0.02 257.54 60.24 97.26 97.22 97.23

GCU

64 GL

94.01 2.12 98.23 86.84 0.18 0.08 496.18 164.08 94.27 94.01 94.06

GLN-GCU-ReLU 94.91 2.23 98.25 85.09 0.15 0.06 403.28 125.33 95.02 94.9 94.93

ReLU 97.17 0.85 98.25 95.61 0.09 0.02 238.96 41.48 97.21 97.17 97.18

GCU

64 HE

87.95 7.74 96.49 67.54 0.30 0.14 578.26 217.79 89.29 87.94 88.22

GLN-GCU-ReLU 94.34 5.09 98.25 62.28 0.16 0.11 520.36 189.66 94.5 94.34 94.38

ReLU 97.22 0.80 98.25 95.58 0.08 0.02 257.72 45.06 97.25 97.22 97.23

As can be seen in Table 9 and Figure 29, the Tanh function was the one that
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Figure 29 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Breast Cancer - GCU/GLN-GCU-R/ReLU)

Figure 30 – Box-Plot of weight values α per layer (50 experiments) [Breast Cancer -
GLN-GCU-R]

presented the best performance in relation to the GLN-GCU-R and ReLU activation

functions. The KS test presented in Table 10 shows that the ReLU and GLN-GCU-R

functions are statistically similar for batch size 8. The model with the GLN-GCU-R

activation function, whose local component is given by the ReLU function, presents greater

stability compared to the GLN-GCU activation function, whose local component is given

by the Tanh function, when using the parameters with the worst performance of the GCU

function, batch 64 and normal HE initialization method.

We can see from Figure 30 that the values of α show similar trends compared to

the GLN-GCU activation function. In the first layer for batch size equal to 8 it approaches

0.4, indicating a greater contribution to the hyperbolic tangent function. While for size 64

it is close to 0.6, indicating a slight prevalence for the global Increasing Cosine function.
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In the second layer of the model, the value of α also presents a very large dispersion,

indicating a certain instability in the choice of the predominant function, especially for

the batch size equal to 8. However, unlike the GLN-GCU function, this distribution tends

more towards the local ReLU function.

Table 10 – KS test results for accuracy - Breast Cancer

batch size → 8 64

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln No 5.84e-03 Yes 0.549 Yes 0.179 Yes 0.272 Yes 0.869 Yes 0.998 No 1.15e-02 Yes 0.869

sin - - No 3.80e-05 - No 2.83e-03 - Yes 0.396 - No 1.31e-03

act relu sin relu sin relu sin relu sin

gln_relu Yes 0.967 No 1.31e-03 Yes 0.549 No 2.83e-03 Yes 0.998 Yes 0.869 Yes 1.0 No 2.83e-03

relu - No 5.84e-03 - Yes 0.272 - Yes 0.967 - No 1.15e-02

act mish sin mish sin mish sin mish sin

gln_mish Yes 0.396 No 1.45e-07 Yes 0.869 No 2.83e-03 Yes 0.717 Yes 0.272 Yes 0.869 No 5.84e-03

mish - No 5.82e-04 - No 5.84e-03 - Yes 0.869 - No 5.84e-03

act gln_gcu tanh gln_gcu tanh gln_gcu tanh gln_gcu tanh

gcu No 1.39e-05 No 8.76e-13 No 1.58e-06 No 8.76e-13 No 1.15e-02 No 3.77e-17 No 1.58e-06 No 1.49e-21

gln_gcu - Yes 0.112 - No 1.15e-02 - No 2.67e-11 - No 8.76e-13

act gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu

gcu No 1.45e-07 No 8.76e-13 No 4.93e-07 No 8.76e-13 Yes 0.112 No 2.81e-15 No 1.58e-06 No 3.21e-24

gln_gcu_r - Yes 0.549 - Yes 0.396 - No 1.06e-08 - No 4.05e-08

4.2.1.2 Iris

Tables 11, 12, 13, 14 and 15 present the results, for the Iris dataset, of the

models that trained with the activation functions respectively: GLN and the functions

that compose it, the Tanh and Sine functions; GLN-ReLU and the functions that compose

it, the ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish

and Sine function; GLN-GCU and the functions that compose it, the Tanh function and

GCU; GLN-GCU-R and the functions that compose it, the ReLU and GCU function. The

average accuracy values for the test data, their maximum and minimum values and the

standard deviation are presented. It also presents the loss values for this same data set

and its standard deviation, the value of the time, where the lowest loss value was obtained

for the validation set, and its standard deviation. Precision, recall and f1-score values are

also presented. The data was grouped by the parameter variations performed: batch size,

8 and 64, and the two initialization methods tested, Glorot Normal and He Normal.

To provide a summary view of the data distribution and complement the information
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in these tables, we present the accuracy data in bloxpot format in the Figures 31, 33,

35, 37, 39. Each graph represents the distribution of accuracy results for each activation

function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 32, 34, 36, 38 and 40.

Table 11 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Iris -
GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

8 GL

96.93 3.15 100.0 90.0 0.07 0.04 823.50 219.66 96.94 96.93 96.93

Sin 96.53 3.50 100.0 90.0 0.08 0.04 787.60 214.23 96.58 96.53 96.53

Tanh 97.67 2.95 100.0 90.0 0.10 0.04 848.88 220.14 97.68 97.67 97.67

GLN

8 HE

96.33 3.52 100.0 90.0 0.09 0.05 833.10 248.96 96.34 96.33 96.33

Sin 97.07 3.34 100.0 90.0 0.08 0.05 893.66 195.05 97.08 97.07 97.07

Tanh 97.07 3.41 100.0 90.0 0.10 0.05 896.40 224.05 97.07 97.07 97.06

GLN

64 GL

97.60 2.94 100.0 90.0 0.07 0.05 941.88 221.66 97.61 97.6 97.6

Sin 97.27 2.83 100.0 90.0 0.07 0.05 996.56 197.48 97.27 97.27 97.27

Tanh 97.13 3.16 100.0 90.0 0.07 0.05 966.24 164.35 97.13 97.13 97.13

GLN

64 HE

96.87 3.39 100.0 90.0 0.07 0.05 1059.94 294.80 96.87 96.87 96.87

Sin 96.60 2.82 100.0 90.0 0.08 0.05 1132.56 247.26 96.6 96.6 96.6

Tanh 97.07 3.48 100.0 90.0 0.08 0.06 1067.60 216.81 97.07 97.07 97.07

Figure 31 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (IRIS - GLN/Tanh/Sine)

As can be seen in Table 11 and Figure 31, the hyperbolic tangent function, in

the batch variation equal to 8 and GL initialization method, was the one that obtained

the highest average accuracy value, 97.67, between the GLN and Sine functions. This
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Figure 32 – Box-Plot of weight values α per layer (50 experiments) [IRIS - GLN]

performance was also reflected in the precision, recall and f1-score metrics. However, as

we see in Table 16, all models present a statistically similar distribution in all variations.

All functions reached the maximum accuracy value of 100% and the same minimum value

of 90%. The model with the sine function was the one with the shortest convergence time,

787 epochs. No significant difference is noted in the results across the different parameters

used.

The distribution of α values can be seen in Figure 32. In the first layer, regardless

of the parameter variation, the values were above 0.5, indicating a choice for the global

function. However, in the second layer, there was a clear difference in the values of α in

relation to the batch size. α tended towards the local Tanh function in models with the

batch size parameter at 8, while it was close to 0.5 for size 64.

Figure 33 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (IRIS - GLN-ReLU/ReLU/Sine)
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Table 12 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Iris -
GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

8 GL

96.67 3.37 100.0 90.0 0.08 0.05 787.66 219.77 96.69 96.67 96.67

ReLU 97.80 3.06 100.0 90.0 0.09 0.06 598.72 164.19 97.8 97.8 97.8

Sin 96.53 3.50 100.0 90.0 0.08 0.04 787.60 214.23 96.58 96.53 96.53

GLN-ReLU

8 HE

96.60 3.47 100.0 90.0 0.09 0.05 780.54 221.40 96.61 96.6 96.6

ReLU 97.53 2.92 100.0 90.0 0.09 0.05 693.84 221.92 97.55 97.53 97.53

Sin 97.07 3.34 100.0 90.0 0.08 0.05 893.66 195.05 97.08 97.07 97.07

GLN-ReLU

64 GL

97.13 2.69 100.0 93.33 0.07 0.05 867.28 196.98 97.14 97.13 97.13

ReLU 97.80 2.91 100.0 90.00 0.07 0.06 830.80 253.45 97.8 97.8 97.8

Sin 97.27 2.83 100.0 90.00 0.07 0.05 996.56 197.48 97.27 97.27 97.27

GLN-ReLU

64 HE

96.80 3.36 100.0 90.0 0.07 0.06 985.40 229.90 96.8 96.8 96.8

ReLU 97.47 2.74 100.0 90.0 0.07 0.05 942.88 229.27 97.47 97.47 97.47

Sin 96.60 2.82 100.0 90.0 0.08 0.05 1132.56 247.26 96.6 96.6 96.6

Figure 34 – Box-Plot of weight values α per layer (50 experiments) [IRIS - GLN-ReLU]

As seen in Table 12 and Figure 33, the ReLU function was the one that obtained

the highest average accuracy value, 97.80, between the GLN-ReLU and Seno functions,

both in the batch variation equal to 8 and 64, and in the GL initialization method. This

performance was also reflected in the precision, recall and f1-score metrics. However, as we

see in Table 16, the KS test demonstrates that the null hypothesis cannot be discarded,

indicating that all models presented a statistically similar distribution in all variations.

All functions reached the maximum value of 100% accuracy and the minimum value of

at least 90%. The GLN-ReLU function was the one with the greatest stability for the

accuracy value in variation 64, batch size and GL weights initialization method. And the

model with the ReLU function was the one with the shortest convergence time, 598 epochs.
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No significant difference was noted in the results in the different parameters used.

The distribution of α values can be seen in Figure 34. In the first layer, the values

tended to be slightly above 0.5, indicating a slight choice for the global function. For the

8 GL variation, the distribution of α values became more dispersed. Reaching both values

close to 0.2 and 0.8. However, in the second layer, there was also a clear distinction in the

values of α for the two batch values. The value of α tended more towards the local ReLU

function in models with the batch size parameter at 8, while it was close to 0.5 for size 64,

indicating a balance in the weights between the sine and tanh functions.

Table 13 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Iris -
GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

8 GL

97.07 3.20 100.0 90.00 0.08 0.04 823.92 223.24 97.08 97.07 97.07

Mish 97.73 2.81 100.0 93.33 0.09 0.05 820.32 282.24 97.74 97.73 97.73

Sin 96.53 3.50 100.0 90.00 0.08 0.04 787.60 214.23 96.58 96.53 96.53

GLN-Mish

8 HE

96.53 3.50 100.0 90.00 0.09 0.05 812.62 211.21 96.54 96.53 96.53

Mish 97.87 2.76 100.0 93.33 0.10 0.04 773.26 224.81 97.87 97.87 97.87

Sin 97.07 3.34 100.0 90.00 0.08 0.05 893.66 195.05 97.08 97.07 97.07

GLN-Mish

64 GL

97.40 2.88 100.0 93.33 0.06 0.05 896.24 190.63 97.41 97.4 97.4

Mish 98.13 2.71 100.0 93.33 0.06 0.05 1020.32 225.91 98.13 98.13 98.13

Sin 97.27 2.83 100.0 90.00 0.07 0.05 996.56 197.48 97.27 97.27 97.27

GLN-Mish

64 HE

97.00 3.18 100.0 90.0 0.07 0.05 994.78 245.48 97.0 97.0 97.0

Mish 97.67 2.88 100.0 90.0 0.06 0.05 1132.88 285.80 97.67 97.67 97.67

Sin 96.60 2.82 100.0 90.0 0.08 0.05 1132.56 247.26 96.6 96.6 96.6

Figure 35 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (IRIS - GLN-Mish/Mish/Sine)
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Figure 36 – Box-Plot of weight values α per layer (50 experiments) [IRIS - GLN-Mish]

As demonstrated in Table 13 and Figure 35, the Mish function achieved the

highest average accuracy value, with 98.13, surpassing the GLN-Mish and Sine functions,

in both batch variations of 8 and 64, and with the GL initialization method. This superior

result was also observed in the precision, recall and f1-score metrics. However, as indicated

by Table 16, the KS test did not allow rejecting the null hypothesis, suggesting that

the model distributions are statistically similar in all tested configurations. All functions

achieved a maximum accuracy of 100% and a minimum accuracy of at least 90%. The

Mish function showed greater stability in accuracy in the batch configuration of 64 and

GL initialization method. The model using the Mish function presented the shortest

convergence time, with 773 epochs. There were no significant differences in the results

between the different parameters used.

The distribution of α values is illustrated in Figure 36. The α values were

predominantly above 0.5, in the first layer, indicating a preference for the global function,

but with a high dispersion in 3 of the 4 variations tested. On the other hand, in the second

layer, the value of α tended more towards the local Mish function in the models with a

batch of 8, while it had a trend above 0.5 for the batch of 64.

As can be seen in Table 14 and Figure 37, the hyperbolic tangent function, in

the batch variation equal to 8 and GL initialization method, was the one that obtained

the highest average accuracy value, 97.67, between the GLN-GCU and GCU functions.

This performance was also reflected in the precision, recall and f1-score metrics. However,

as we see in Table 16, the KS test indicates that the models with batch 8 and batch 64

variations with the GL initialization method presented a statistically similar distribution.
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Table 14 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Iris -
GLN-GCU/Tanh/GCU)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

95.60 6.51 100.0 56.67 0.14 0.14 946.86 357.46 95.6 95.6 95.6

GLN-GCU 96.93 3.42 100.0 90.00 0.08 0.05 812.92 220.39 96.94 96.93 96.93

Tanh 97.67 2.95 100.0 90.00 0.10 0.04 848.88 220.14 97.68 97.67 97.67

GCU

8 HE

90.07 9.72 100.0 56.67 0.34 0.20 841.52 476.50 90.24 90.07 90.05

GLN-GCU 93.73 9.61 100.0 36.67 0.19 0.18 997.30 366.00 93.73 93.73 93.72

Tanh 97.07 3.41 100.0 90.00 0.10 0.05 896.40 224.05 97.07 97.07 97.06

GCU

64 GL

94.07 9.41 100.0 50.0 0.15 0.19 1124.22 400.08 94.09 94.07 94.06

GLN-GCU 97.27 3.21 100.0 90.0 0.08 0.05 1139.10 281.16 97.27 97.27 97.27

Tanh 97.13 3.16 100.0 90.0 0.07 0.05 966.24 164.35 97.13 97.13 97.13

GCU

64 HE

88.47 12.55 100.0 40.00 0.32 0.24 1079.18 496.64 88.86 88.47 88.49

GLN-GCU 87.13 19.37 100.0 13.33 0.28 0.33 1318.20 623.86 87.08 87.13 87.09

Tanh 97.07 3.48 100.0 90.00 0.08 0.06 1067.60 216.81 97.07 97.07 97.07

Figure 37 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (IRIS - GCU/GLN-GCU/Tanh)

Figure 38 – Box-Plot of weight values α per layer (50 experiments) [IRIS - GLN-GCU]
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All functions reached the maximum value of 100% accuracy. However, there was a lot of

variation in the results for the models with GCU and GLN-GCU with the normal HE

initialization method, which negatively affected these models, making convergence difficult

in many samples. The model with the GLN-GCU function was the one with the shortest

convergence time, 812 epochs, in the 8 GL variation.

The distribution of α values can be seen in Figure 38. In the first layer, regardless

of the parameter variation, the values were above 0.5, indicating a choice for the global

function. Also in the second layer, the value of α showed a tendency to choose the sine

function, with a higher dispersion mainly for the batch size of 8.

Table 15 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Iris -
GLN-GCU-ReLU/ReLU/GCU))

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

95.60 6.51 100.0 56.67 0.14 0.14 946.86 357.46 95.6 95.6 95.6

GLN-GCU-ReLU 96.47 3.33 100.0 90.00 0.08 0.05 765.56 213.37 96.48 96.47 96.46

ReLU 97.80 3.06 100.0 90.00 0.09 0.06 598.72 164.19 97.8 97.8 97.8

GCU

8 HE

90.07 9.72 100.0 56.67 0.34 0.20 841.52 476.50 90.24 90.07 90.05

GLN-GCU-ReLU 94.13 8.37 100.0 50.00 0.17 0.16 959.06 430.64 94.14 94.13 94.14

ReLU 97.53 2.92 100.0 90.00 0.09 0.05 693.84 221.92 97.55 97.53 97.53

GCU

64 GL

94.07 9.41 100.0 50.00 0.15 0.19 1124.22 400.08 94.09 94.07 94.06

GLN-GCU-ReLU 95.47 13.21 100.0 6.67 0.10 0.17 1062.96 328.03 95.49 95.47 95.48

ReLU 97.80 2.91 100.0 90.00 0.07 0.06 830.80 253.45 97.8 97.8 97.8

GCU

64 HE

88.47 12.55 100.0 40.00 0.32 0.24 1079.18 496.64 88.86 88.47 88.49

GLN-GCU-ReLU 89.93 15.14 100.0 36.67 0.27 0.31 1233.90 552.29 90.09 89.93 89.97

ReLU 97.47 2.74 100.0 90.00 0.07 0.05 942.88 229.27 97.47 97.47 97.47

Figure 39 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (IRIS - GCU/GLN-GCU-R/ReLU)
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Figure 40 – Box-Plot of weight values α per layer (50 experiments) [IRIS - GLN-GCU-R]

Table 16 – KS test results for accuracy - Iris

batch size → 8 64

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln Yes 1.0 Yes 0.869 Yes 0.869 Yes 0.967 Yes 0.967 Yes 0.967 Yes 0.549 Yes 1.0

sin - Yes 0.717 - Yes 1.0 - Yes 1.0 - Yes 0.272

act relu sin relu sin relu sin relu sin

gln_relu Yes 0.396 Yes 1.0 Yes 0.967 Yes 0.998 Yes 0.396 Yes 1.0 Yes 0.869 Yes 0.717

relu - Yes 0.396 - Yes 0.998 - Yes 0.717 - Yes 0.549

act mish sin mish sin mish sin mish sin

gln_mish Yes 0.998 Yes 1.0 Yes 0.549 Yes 0.998 Yes 0.717 Yes 1.0 Yes 0.967 Yes 0.717

mish - Yes 0.717 - Yes 0.967 - Yes 0.272 - Yes 0.112

act gln_gcu tanh gln_gcu tanh gln_gcu tanh gln_gcu tanh

gcu Yes 0.717 Yes 0.179 Yes 0.068 No 1.31e-03 Yes 0.549 Yes 0.272 Yes 0.869 No 1.31e-03

gln_gcu - Yes 0.998 - Yes 0.112 - Yes 1.0 - No 5.84e-03

act gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu

gcu Yes 1.0 Yes 0.068 Yes 0.112 No 5.82e-04 Yes 0.396 Yes 0.272 Yes 0.396 No 3.80e-05

gln_gcu_r - Yes 0.112 - Yes 0.068 - Yes 0.967 - No 2.17e-02

As can be seen in Table 15 and Figure 39, the ReLU function was the one that

obtained the highest average accuracy value, 97.80, between the GLN-ReLU and Seno

functions, both in the same batch variation at 8 and 64, and in the GL initialization

method. This performance was also reflected in the precision, recall and f1-score metrics.

However, as we see in Table 16, the KS test indicates that the models with batch 8 and

batch 64 variations with the GL initialization method presented a statistically similar

distribution. All functions reached the maximum value of 100% accuracy. There was also a

lot of variation in the results for the models with GCU and GLN-GCU-R with the normal

HE initialization method, making convergence difficult in many samples. The model with

the ReLU function was the one with the shortest convergence time and greatest stability,
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598 epochs with a standard deviation of 164.

The distribution of α values can be seen in Figure 40. In the first layer, the values

tended to be slightly above 0.5, indicating a slight choice for the global function. In the

second layer, the values were much more dispersed, especially for the batch 8 variation,

reaching values close to 1 and 0, indicating that at times this layer predominantly chose

the global function, at times it preferred the local function.

4.2.1.3 Wine

Tables 17, 18, 19, 20 and 21 present the results, for the Wine dataset, of the

models that trained with the activation functions respectively: GLN and the functions

that compose it, the Tanh and Sine functions; GLN-ReLU and the functions that compose

it, the ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish

and Sine function; GLN-GCU and the functions that compose it, the Tanh function and

GCU; GLN-GCU-R and the functions that compose it, the ReLU and GCU function. The

average accuracy values for the test data, their maximum and minimum values and the

standard deviation are presented. It also presents the loss values for this same data set

and its standard deviation, the value of the time, where the lowest loss value was obtained

for the validation set, and its standard deviation. Precision, recall and f1-score values are

also presented. The data was grouped by the parameter variations performed: batch size,

8 and 64, and the two initialization methods tested, Glorot Normal and He Normal.

To provide a summary view of the data distribution and complement the information

in these tables, we present the accuracy data in bloxpot format in the Figures 41, 43, 45,

47 and 49. Each graph represents the distribution of accuracy results for each activation

function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 42, 44, 46, 48 and 50.

According to Table 17 and Figure 41, the hyperbolic tangent function, in the batch

variation equal to 8 and GL initialization method, was the one that obtained the highest

average accuracy value, 97.30, among the GLN and Sine functions, also having better

performance in the precision, recall and f1-score metrics. Despite this higher average,

according to Table 22, all models present a statistically similar distribution in all variations.
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Table 17 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Wine -
GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

8 GL

96.91 2.80 100.0 88.89 0.08 0.05 590.72 221.40 97.02 96.91 96.92

Sin 96.86 3.34 100.0 86.11 0.09 0.05 547.54 147.67 96.91 96.85 96.86

Tanh 97.30 2.61 100.0 91.43 0.08 0.05 549.18 232.91 97.37 97.3 97.31

GLN

8 HE

96.97 3.47 100.0 80.56 0.09 0.07 584.70 185.45 97.06 96.97 96.98

Sin 95.68 3.06 100.0 86.11 0.12 0.09 622.68 171.58 95.84 95.67 95.7

Tanh 96.86 2.63 100.0 91.43 0.09 0.06 561.10 236.94 97.0 96.85 96.87

GLN

64 GL

96.28 2.53 100.0 88.57 0.11 0.08 923.58 378.47 96.34 96.29 96.3

Sin 96.67 2.27 100.0 91.43 0.09 0.06 870.76 309.39 96.74 96.69 96.69

Tanh 96.63 1.97 100.0 91.43 0.11 0.06 929.16 410.38 96.67 96.63 96.64

GLN

64 HE

95.90 3.28 100.0 85.71 0.10 0.08 997.52 371.50 95.95 95.9 95.9

Sin 96.12 3.68 100.0 85.71 0.11 0.10 1026.00 335.89 96.22 96.12 96.14

Tanh 96.69 2.32 100.0 91.43 0.11 0.07 1020.06 396.44 96.74 96.69 96.69

Figure 41 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Wine - GLN/Tanh/Sine)

All functions managed to reach the maximum value of 100% accuracy. The model with

the sine function was the one that presented the shortest convergence time, 547 epochs.

No significant difference is noted in the results in the different parameters used except for

the significant difference in the convergence speed when the batch size varies.

The distribution of α values can be seen in Figure 42. In the first layer, regardless

of the variation of the parameters, the values were slightly above 0.5, indicating a slight

bias towards the global function. However, in the second layer, there was a clear difference

in the α values in relation to the batch size. α tended strongly towards the local Tanh

function in the models with the batch size parameter at 8, while it was slightly below 0.5

for the batch size parameter of 64.
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Figure 42 – Box-Plot of weight values α per layer (50 experiments) [Wine - GLN]

Table 18 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Wine -
GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

8 GL

96.23 3.09 100.0 88.89 0.09 0.06 524.34 203.88 96.39 96.24 96.26

ReLU 96.36 2.73 100.0 88.89 0.09 0.06 704.74 260.29 96.49 96.35 96.37

Sin 96.86 3.34 100.0 86.11 0.09 0.05 547.54 147.67 96.91 96.85 96.86

GLN-ReLU

8 HE

96.70 2.74 100.0 88.89 0.09 0.05 602.64 179.93 96.81 96.69 96.7

ReLU 96.01 3.06 100.0 88.57 0.10 0.06 680.74 200.42 96.09 96.01 96.03

Sin 95.68 3.06 100.0 86.11 0.12 0.09 622.68 171.58 95.84 95.67 95.7

GLN-ReLU

64 GL

96.68 2.61 100.0 88.57 0.11 0.08 936.12 388.61 96.78 96.69 96.69

ReLU 96.57 2.92 100.0 86.11 0.10 0.07 1047.76 391.75 96.64 96.57 96.59

Sin 96.67 2.27 100.0 91.43 0.09 0.06 870.76 309.39 96.74 96.69 96.69

GLN-ReLU

64 HE

96.75 2.28 100.0 91.67 0.10 0.07 947.5 347.10 96.8 96.74 96.75

ReLU 96.80 2.53 100.0 88.89 0.10 0.09 1239.9 420.35 96.82 96.8 96.8

Sin 96.12 3.68 100.0 85.71 0.11 0.10 1026.0 335.89 96.22 96.12 96.14

Figure 43 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Wine - GLN-ReLU/ReLU/Sine)
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Figure 44 – Box-Plot of weight values α per layer (50 experiments) [Wine - GLN-ReLU]

According to Table 18 and Figure 43, the Sine function, in the batch variation equal

to 8 and GL initialization method, was the one that obtained the highest average accuracy

value, 96.86, among the GLN-ReLU and ReLU functions, also having better performance

in the precision, recall and f1-score metrics. According to Table 22, all models however

present a statistically similar distribution in all variations. All functions also managed to

reach the maximum value of 100% accuracy. The model with the GLN-ReLU function was

the one that presented the shortest convergence time, 524 epochs. A significant difference

in the results is only noted in the convergence speed when the batch size varies.

The distribution of α values can be seen in Figure 44. The values in the first layer

were above 0.5, regardless of the variation of the parameters, indicating a choice for the

global function. In contrast, in the second layer, there was a clear difference in the values

of α in relation to the batch size. α tended towards the local ReLU function in the models

with the batch size parameter at 8, while it was slightly above 0.5 for the size 64.

As seen in Table 19 and Figure 45, the Mish function, in the batch variation equal

to 64 and GL initialization method, was the one that obtained the highest average accuracy

value, 97.64, among the GLN-Mish and Sin functions, also having better performance in

the precision, recall and f1-score metrics. Even so, all models present a statistically similar

distribution in all variations, according to Table 22. All functions also managed to reach

the maximum value of 100% accuracy. With 542 epochs, the model with the GLN-Mish

function was the one that presented the shortest convergence time. Here, a significant

difference in the results is also noted only in the convergence speed when the batch size is

changed.
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Table 19 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Wine -
GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

8 GL

96.91 2.29 100.0 91.43 0.09 0.05 542.46 188.51 97.0 96.91 96.92

Mish 96.86 2.91 100.0 88.89 0.09 0.05 557.36 138.09 96.94 96.85 96.87

Sin 96.86 3.34 100.0 86.11 0.09 0.05 547.54 147.67 96.91 96.85 96.86

GLN-Mish

8 HE

96.35 3.01 100.0 88.57 0.09 0.06 569.60 162.17 96.44 96.35 96.36

Mish 96.58 2.71 100.0 86.11 0.10 0.06 641.10 196.59 96.68 96.57 96.58

Sin 95.68 3.06 100.0 86.11 0.12 0.09 622.68 171.58 95.84 95.67 95.7

GLN-Mish

64 GL

96.57 2.38 100.0 88.57 0.10 0.06 862.64 371.25 96.64 96.57 96.58

Mish 97.64 2.16 100.0 91.43 0.07 0.06 1068.98 381.16 97.69 97.64 97.64

Sin 96.67 2.27 100.0 91.43 0.09 0.06 870.76 309.39 96.74 96.69 96.69

GLN-Mish

64 HE

96.29 2.57 100.0 88.57 0.12 0.10 945.92 384.34 96.41 96.29 96.31

Mish 97.13 1.94 100.0 91.43 0.08 0.06 1183.00 440.30 97.19 97.13 97.14

Sin 96.12 3.68 100.0 85.71 0.11 0.10 1026.00 335.89 96.22 96.12 96.14

Figure 45 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Wine - GLN-Mish/Mish/Sine)

Figure 46 – Box-Plot of weight values α per layer (50 experiments) [Wine - GLN-Mish]
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The distribution of α values can be seen in Figure 46. In all parameter variations,

the values in the first layer were above 0.5, which indicates a choice for the global function

in this first layer. While in the second layer, the batch size leads to different choices in the

values of α. This tended towards the local function Mish in the models with the batch

size parameter at 8, while it was slightly above 0.5 for the size 64.

Table 20 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Wine -
GLN-GCU/Tanh/GCU)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

90.97 7.92 100.0 63.89 0.25 0.16 786.98 260.88 90.96 90.96 90.96

GLN-GCU 95.11 3.04 100.0 88.89 0.14 0.06 691.70 233.24 95.18 95.11 95.13

Tanh 97.30 2.61 100.0 91.43 0.08 0.05 549.18 232.91 97.37 97.3 97.31

GCU

8 HE

80.24 13.38 100.0 30.56 0.52 0.30 903.54 388.75 80.25 80.17 80.15

GLN-GCU 88.29 12.88 100.0 41.67 0.29 0.26 939.74 355.69 88.27 88.26 88.26

Tanh 96.86 2.63 100.0 91.43 0.09 0.06 561.10 236.94 97.0 96.85 96.87

GCU

64 GL

81.65 15.75 100.0 27.78 0.44 0.28 1072.10 494.27 81.71 81.63 81.65

GLN-GCU 90.87 8.41 100.0 48.57 0.22 0.17 1070.26 462.60 90.99 90.9 90.91

Tanh 96.63 1.97 100.0 91.43 0.11 0.06 929.16 410.38 96.67 96.63 96.64

GCU

64 HE

61.40 15.98 91.43 17.14 0.87 0.28 823.06 518.41 62.14 61.4 61.54

GLN-GCU 61.70 20.40 97.14 27.78 0.81 0.36 858.42 586.08 62.23 61.63 61.74

Tanh 96.69 2.32 100.00 91.43 0.11 0.07 1020.06 396.44 96.74 96.69 96.69

Figure 47 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Wine - GCU/GLN-GCU/Tanh)

As shown in Table 20 and Figure 47, the hyperbolic tangent function, in the

batch variation equal to 8 and GL initialization method, was the one that obtained the

highest average accuracy value, 97.30, among the GLN-GCU and GCU functions and the

shortest convergence time in this same parameter variation, 549. This performance was
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Figure 48 – Box-Plot of weight values α per layer (50 experiments) [Wine - GLN-GCU]

also reflected in the precision, recall and f1-score metrics. There was no similarity between

the models with GLN-CGU and the Tanh function, as shown in the results presented in

the KS test that we can see in Table 22. Only the GLN-GCU and GCU models did not

reach the maximum value of 100% accuracy when the batch had the value 64 and the

initialization method was HE, with a wide variation in the results of the samples in these

parameter values.

The distribution of the α values can be seen in Figure 48. In the first layer,

regardless of the variation of the parameters, the values were above 0.5, indicating a choice

for the global function. Also in the second layer the value of α showed a tendency to

choose the GCU function, with a higher dispersion mainly for the batch size of 8.

Table 21 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Wine -
GLN-GCU-ReLU/ReLU/GCU))

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

90.97 7.92 100.0 63.89 0.25 0.16 786.98 260.88 90.96 90.96 90.96

GLN-GCU-ReLU 94.94 3.02 100.0 88.57 0.14 0.08 667.96 202.08 95.0 94.94 94.95

ReLU 96.36 2.73 100.0 88.89 0.09 0.06 704.74 260.29 96.49 96.35 96.37

GCU

8 HE

80.24 13.38 100.0 30.56 0.52 0.30 903.54 388.75 80.25 80.17 80.15

GLN-GCU-ReLU 88.54 16.89 100.0 25.71 0.28 0.31 949.66 406.17 88.58 88.54 88.54

ReLU 96.01 3.06 100.0 88.57 0.10 0.06 680.74 200.42 96.09 96.01 96.03

GCU

64 GL

81.65 15.75 100.0 27.78 0.44 0.28 1072.10 494.27 81.71 81.63 81.65

GLN-GCU-ReLU 90.92 8.44 100.0 63.89 0.24 0.20 1147.74 295.73 90.99 90.9 90.92

ReLU 96.57 2.92 100.0 86.11 0.10 0.07 1047.76 391.75 96.64 96.57 96.59

GCU

64 HE

61.40 15.98 91.43 17.14 0.87 0.28 823.06 518.41 62.14 61.4 61.54

GLN-GCU-ReLU 70.87 23.05 97.22 25.71 0.62 0.40 907.26 581.10 71.22 70.84 70.92

ReLU 96.80 2.53 100.00 88.89 0.10 0.09 1239.90 420.35 96.82 96.8 96.8



88

Figure 49 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Wine - GCU/GLN-GCU-R/ReLU)

Figure 50 – Box-Plot of weight values α per layer (50 experiments) [Wine - GLN-GCU-R]

As we can see in Table 21 and Figure 49, the ReLU function, in the batch variation

equal to 64 and HE initialization method, was the one that obtained the highest average

accuracy value, 96.80, among the GLN-GCU-R and GCU functions. This performance was

also reflected in the precision, recall and f1-score metrics. There was no similarity between

the models with GLN-CGU and the ReLU function in the same parameter variations as

seen in Table 22. However, although the KS test was not performed between distributions

with different parameters, we can see in Figure 49 great similarity of the distributions of

the ReLU models with the GLN-GCU-R model in the 8 GL variation, indicating that they

probably have the same distribution. In this experiment, only the GLN-GCU and GCU

models did not reach the maximum accuracy value of 100% when the batch size was 64

and the initialization method was HE, with a wide variation in the results of the samples
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at these parameter values.

The distribution of the α values can be seen in Figure 50. In the first layer,

regardless of the variation in the parameters, the values were above 0.5, indicating a choice

for the global function and relatively similar in all parameter variations. Also, the value

of α, in the second layer, tended to choose the GCU function, with a higher dispersion

mainly for the batch size of 8.

Table 22 – KS test results for accuracy - Wine

batch size → 8 64

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln Yes 1.0 Yes 0.967 Yes 0.112 Yes 0.549 Yes 1.0 Yes 0.998 Yes 0.717 Yes 0.717

sin - Yes 1.0 - Yes 0.396 - Yes 1.0 - Yes 0.396

act relu sin relu sin relu sin relu sin

gln_relu Yes 0.998 Yes 0.717 Yes 0.717 Yes 0.717 Yes 0.967 Yes 1.0 Yes 1.0 Yes 0.717

relu - Yes 0.396 - Yes 0.998 - Yes 0.998 - Yes 0.869

act mish sin mish sin mish sin mish sin

gln_mish Yes 1.0 Yes 0.869 Yes 0.998 Yes 0.967 Yes 0.272 Yes 1.0 Yes 0.179 Yes 0.869

mish - Yes 1.0 - Yes 0.869 - Yes 0.272 - Yes 0.179

act gln_gcu tanh gln_gcu tanh gln_gcu tanh gln_gcu tanh

gcu No 3.92e-02 No 3.80e-05 No 1.58e-06 No 2.08e-14 No 2.83e-03 1.41e-13 Yes 0.549 No 1.98e-27

gln_gcu - No 1.31e-03 - No 4.93e-07 - 1.58e-06 - No 7.77e-23

act gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu

gcu No 3.92e-02 No 5.82e-04 No 1.45e-07 No 8.76e-13 No 5.84e-03 2.67e-11 No 1.31e-03 No 9.81e-26

gln_gcu_r - Yes 0.179 - Yes 0.068 - 2.83e-03 - No 5.02e-12

4.2.1.4 Yeast

Tables 23, 24, 25, 26 and 27 present the results, for the Yeast dataset, of the

models that trained with the activation functions respectively: GLN and the functions

that compose it, the Tanh and Sine functions; GLN-ReLU and the functions that compose

it, the ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish

and Sine function; GLN-GCU and the functions that compose it, the Tanh function and

GCU; GLN-GCU-R and the functions that compose it, the ReLU and GCU function. The

average accuracy values for the test data, their maximum and minimum values and the

standard deviation are presented. It also presents the loss values for this same data set

and its standard deviation, the value of the time, where the lowest loss value was obtained

for the validation set, and its standard deviation. Precision, recall and f1-score values are

also presented. The data was grouped by the parameter variations performed: batch size,
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8 and 64, and the two initialization methods tested, Glorot Normal and He Normal.

To provide a summary view of the data distribution and complement the information

in these tables, we present the accuracy data in bloxpot format in the Figures 51, 53, 55,

57 and 59. Each graph represents the distribution of accuracy results for each activation

function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 42, 44, 46, 48, 50.

Table 23 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Yeast -
GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

8 GL

58.27 2.33 62.96 53.87 1.12 0.06 181.28 39.95 60.65 58.27 59.14

Sin 58.11 2.74 64.31 52.19 1.12 0.06 186.64 35.16 60.27 58.11 58.94

Tanh 58.26 2.59 63.30 52.86 1.11 0.05 205.64 54.83 60.54 58.26 59.09

GLN

8 HE

57.95 2.89 63.64 53.20 1.14 0.06 156.90 20.14 60.35 57.95 58.9

Sin 57.12 2.76 62.29 50.84 1.18 0.07 151.74 19.41 59.48 57.12 58.03

Tanh 58.10 2.41 63.30 53.87 1.12 0.06 207.30 47.08 60.28 58.1 58.94

GLN

64 GL

58.36 2.54 62.96 53.20 1.17 0.07 153.32 25.84 60.47 58.36 59.16

Sin 58.51 2.48 62.29 53.87 1.17 0.07 145.80 22.08 60.73 58.51 59.37

Tanh 58.59 2.53 63.30 53.20 1.13 0.07 193.58 37.65 60.73 58.58 59.37

GLN

64 HE

57.73 2.71 62.29 51.85 1.21 0.07 168.92 16.47 60.26 57.73 58.69

Sin 56.98 2.23 60.94 52.19 1.23 0.06 184.48 13.06 59.65 56.98 57.99

Tanh 58.03 2.68 62.63 52.53 1.15 0.06 197.58 29.28 60.4 58.03 58.88

Figure 51 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Yeast - GLN/Tanh/Sine)

According to Table 23 and Figure 51, the hyperbolic tangent function, in the batch
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Figure 52 – Box-Plot of weight values α per layer (50 experiments) [Yeast - GLN]

variation equal to 64 and GL initialization method, was the one that obtained the highest

average accuracy value, 58.59, among the GLN and Sine functions, also having better

performance in the precision, recall and f1-score metrics. Despite this higher average,

according to Table 28, all models present a statistically similar distribution in all variations.

The model with the sine function was the one that presented the shortest convergence time,

145 epochs. No significant difference is noted in the results in the different parameters

used.

The distribution of the α values can be seen in Figure 52. A certain difference in

the values according to the parameters can be seen. In the first layer, the distribution

of values is above 0.5, indicating a preference for the global characteristic, and more so

when the batch value is 8. Otherwise, in the next two layers, the distribution is inclined to

choose the local characteristic for that same batch value and to slightly choose the global

characteristic when the value is 64.

According to Table 24 and Figure 53, the GLN-ReLU function, in the batch

variation equal to 64 and GL initialization method, was the one that obtained the highest

average accuracy value, 58.63, among the ReLU and Sine functions, also having better

performance in the precision, recall and f1-score metrics. According to Table 28, all

models however present a statistically similar distribution in all variations. The model

with the Sine function was the one that presented the shortest convergence time, 145

epochs in this same variation of parameters. There is no great difference in the results due

to the change in parameters.

The distribution of the α values can be seen in Figure 54. A certain difference in
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Table 24 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Yeast -
GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

8 GL

58.45 2.36 62.96 53.54 1.12 0.06 172.26 36.69 60.79 58.45 59.25

ReLU 58.27 2.51 63.30 53.54 1.14 0.07 153.12 24.84 60.34 58.27 58.98

Sin 58.11 2.74 64.31 52.19 1.12 0.06 186.64 35.16 60.27 58.11 58.94

GLN-ReLU

8 HE

58.13 2.25 62.63 54.21 1.12 0.06 148.14 19.83 60.58 58.13 59.05

ReLU 58.28 2.99 64.31 50.51 1.15 0.08 151.34 25.98 60.47 58.28 59.03

Sin 57.12 2.76 62.29 50.84 1.18 0.07 151.74 19.41 59.48 57.12 58.03

GLN-ReLU

64 GL

58.63 2.36 62.96 52.53 1.14 0.08 150.20 28.57 60.82 58.63 59.43

ReLU 58.42 2.73 64.31 52.53 1.13 0.08 160.86 25.43 60.44 58.42 59.18

Sin 58.51 2.48 62.29 53.87 1.17 0.07 145.80 22.08 60.73 58.51 59.37

GLN-ReLU

64 HE

58.19 2.44 61.62 53.20 1.16 0.08 174.20 16.71 60.48 58.19 59.08

ReLU 58.47 2.25 62.29 53.20 1.12 0.07 178.32 20.86 60.6 58.47 59.29

Sin 56.98 2.23 60.94 52.19 1.23 0.06 184.48 13.06 59.65 56.98 57.99

Figure 53 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Yeast - GLN-ReLU/ReLU/Sine)

Figure 54 – Box-Plot of weight values α per layer (50 experiments) [Yeast - GLN-ReLU]
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the values according to the parameters can be seen. In the first layer, the distribution of

values is below 0.5, indicating a preference for the local feature when the initialization

method is GL, while in the HE method, the preference is reversed. In the next two layers,

the distribution is inclined to choose the local feature when the batch value is 8 and to

choose the global feature when the value is 64.

Table 25 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Yeast -
GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

8 GL

58.10 2.18 62.63 52.53 1.11 0.06 169.72 29.94 60.28 58.1 58.91

Mish 58.90 2.69 63.97 52.19 1.12 0.06 171.68 48.02 60.83 58.89 59.52

Sin 58.11 2.74 64.31 52.19 1.12 0.06 186.64 35.16 60.27 58.11 58.94

GLN-Mish

8 HE

58.20 2.47 62.96 52.86 1.12 0.06 144.24 21.64 60.56 58.19 59.09

Mish 58.43 2.71 64.31 52.86 1.13 0.06 185.16 48.86 60.68 58.43 59.18

Sin 57.12 2.76 62.29 50.84 1.18 0.07 151.74 19.41 59.48 57.12 58.03

GLN-Mish

64 GL

59.16 2.46 64.31 54.55 1.13 0.07 148.14 22.58 61.3 59.16 59.97

Mish 58.99 2.11 61.95 53.54 1.11 0.07 174.18 31.44 61.08 58.99 59.78

Sin 58.51 2.48 62.29 53.87 1.17 0.07 145.80 22.08 60.73 58.51 59.37

GLN-Mish

64 HE

58.15 2.56 62.29 53.20 1.16 0.07 173.60 15.60 60.4 58.15 59.02

Mish 58.99 2.85 63.64 52.86 1.12 0.07 179.80 20.40 61.2 58.99 59.8

Sin 56.98 2.23 60.94 52.19 1.23 0.06 184.48 13.06 59.65 56.98 57.99

Figure 55 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Yeast - GLN-Mish/Mish/Sine)

As seen in Table 25 and Figure 55, the GLN-Mish function, in the batch variation

equal to 64 and GL initialization method, was the one that obtained the highest average

accuracy value, 59.16, among the Mish and Sine functions, also having better performance

in the precision, recall and f1-score metrics. It was also the one that performed best in
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Figure 56 – Box-Plot of weight values α per layer (50 experiments) [Yeast - GLN-Mish]

relation to the convergence speed with 144 epochs. All models present a statistically

similar distribution in all variations, according to Table 28. No significant difference is

observed in the results when the parameters are changed.

The distribution of the α values can be seen in Figure 56. A certain difference in the

values can be seen according to the parameters. In the first layer the distribution of values

is above 0.5 indicating a preference for the global characteristic and more predominantly

when the batch value is 8. Otherwise, in the next two layers, the distribution is inclined to

choose the local characteristic when the batch value is 8 and to slightly choose the global

characteristic when the value is 64.

Table 26 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Yeast -
GLN-GCU/Tanh/GCU)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

55.32 2.51 59.26 49.16 1.21 0.05 294.90 84.68 59.86 55.32 56.83

GLN-GCU 57.83 2.82 62.29 51.52 1.12 0.06 189.74 35.21 60.34 57.83 58.78

Tanh 58.26 2.59 63.30 52.86 1.11 0.05 205.64 54.83 60.54 58.26 59.09

GCU

8 HE

54.56 3.63 59.60 41.89 1.23 0.07 445.12 64.64 58.28 54.56 55.91

GLN-GCU 54.35 2.90 58.92 46.13 1.24 0.07 400.96 87.97 57.68 54.35 55.64

Tanh 58.10 2.41 63.30 53.87 1.12 0.06 207.30 47.08 60.28 58.1 58.94

GCU

64 GL

54.93 3.31 59.60 45.79 1.22 0.09 276.68 77.04 59.34 54.93 56.24

GLN-GCU 57.99 2.45 62.16 52.86 1.17 0.07 233.94 36.53 60.66 57.99 59.02

Tanh 58.59 2.53 63.30 53.20 1.13 0.07 193.58 37.65 60.73 58.58 59.37

GCU

64 HE

50.59 3.40 57.58 42.09 1.30 0.09 646.60 104.72 60.19 50.59 52.76

GLN-GCU 53.21 3.88 59.60 43.10 1.29 0.09 547.24 133.77 58.91 53.21 54.67

Tanh 58.03 2.68 62.63 52.53 1.15 0.06 197.58 29.28 60.4 58.03 58.88

As shown in Table 26 and Figure 57, the hyperbolic tangent function, in the
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Figure 57 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Yeast - GCU/GLN-GCU/Tanh)

Figure 58 – Box-Plot of weight values α per layer (50 experiments) [Yeast - GLN-GCU]

batch variation equal to 64 and GL initialization method, was the one that obtained the

highest average accuracy value, 58.59, among the GLN-GCU and GCU functions. This

performance was also reflected in the precision, recall and f1-score metrics. However, the

shortest convergence time, with the value of 189 epochs, was the GLN-CGU in the 8 GL

variation. According to the results presented in the KS test presented in Table 28, there

was similarity between the models with the GLN-CGU and the Tanh function for the

batch parameters equal to 8 and 64 and GL initialization method.

The distribution of α values can be seen in Figure 58. In the first layer, regardless of

the variation of the parameters, the distribution of values was slightly above 0.5, indicating

a slight preference for the global function. In the second and third layers, there was a

strong inclination towards one of the characteristics, either global or local, depending on
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the parameters.

Table 27 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Yeast -
GLN-GCU-ReLU/ReLU/GCU))

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GCU

8 GL

55.32 2.51 59.26 49.16 1.21 0.05 294.90 84.68 59.86 55.32 56.83

GLN-GCU-ReLU 57.86 2.46 61.62 52.53 1.17 0.08 177.72 42.11 60.52 57.86 58.79

ReLU 58.27 2.51 63.30 53.54 1.14 0.07 153.12 24.84 60.34 58.27 58.98

GCU

8 HE

54.56 3.63 59.60 41.89 1.23 0.07 445.12 64.64 58.28 54.56 55.91

GLN-GCU-ReLU 54.99 2.72 60.47 49.83 1.25 0.08 346.66 97.80 57.82 54.99 56.02

ReLU 58.28 2.99 64.31 50.51 1.15 0.08 151.34 25.98 60.47 58.28 59.03

GCU

64 GL

54.93 3.31 59.60 45.79 1.22 0.09 276.68 77.04 59.34 54.93 56.24

GLN-GCU-ReLU 57.95 2.64 62.84 51.18 1.17 0.07 206.88 39.11 60.4 57.94 58.86

ReLU 58.42 2.73 64.31 52.53 1.13 0.08 160.86 25.43 60.44 58.42 59.18

GCU

64 HE

50.59 3.40 57.58 42.09 1.30 0.09 646.60 104.72 60.19 50.59 52.76

GLN-GCU-ReLU 54.68 3.53 60.61 45.12 1.24 0.09 504.06 144.83 58.98 54.68 55.84

ReLU 58.47 2.25 62.29 53.20 1.12 0.07 178.32 20.86 60.6 58.47 59.29

Figure 59 – Box-Plot of the accuracy values of the test set by activation function (50
experiments). (Yeast - GCU/GLN-GCU-R/ReLU)

As we can see in Table 27 and Figure 59, the ReLU function, in the batch variation

equal to 8 and GL initialization method, was the one that obtained the highest average

accuracy value, 58.47, among the GLN-GCU-R and GCU functions. This performance

was also reflected in the precision, recall and f1-score metrics. The model with the ReLU

function was the one that performed best in relation to convergence speed with 151 epochs.

According to the results presented in the KS test presented in Table 28, there was similarity

between the models with GLN-CGU and the ReLU function for the batch parameters

equal to 8 and 64 and GL initialization method.
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Figure 60 – Box-Plot of weight values α per layer (50 experiments) [Yeast - GLN-GCU-R]

The distribution of the α values can be seen in Figure 60. In the first layer,

regardless of the variation of the parameters, the distribution of the values was also slightly

above 0.5, indicating a slight choice for the global function. In the second and third layers,

there was a prevalence in choosing the local ReLU function when the initialization method

was GL and a high variability of the values with no defined prevalence when the method

was HE.

Table 28 – KS test results for accuracy - Yeast

batch size → 8 64

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln Yes 0.998 Yes 1.0 Yes 0.549 Yes 0.967 Yes 1.0 Yes 0.869 Yes 0.396 Yes 0.967

sin - Yes 1.0 - Yes 0.549 - Yes 0.869 - Yes 0.068

act relu sin relu sin relu sin relu sin

gln_relu Yes 0.869 Yes 0.717 Yes 0.272 Yes 0.272 Yes 0.967 Yes 0.869 Yes 0.869 No 2.17e-02

relu - Yes 0.549 - Yes 0.068 - Yes 0.869 - No 2.83e-03

act mish sin mish sin mish sin mish sin

gln_mish Yes 0.068 Yes 0.998 Yes 0.869 Yes 0.179 Yes 0.869 Yes 0.549 Yes 0.272 Yes 0.068

mish - Yes 0.112 - No 2.17e-02 - Yes 0.272 - No 2.46e-04

act gln_gcu tanh gln_gcu tanh gln_gcu tanh gln_gcu tanh

gcu No 2.46e-04 No 1.39e-05 Yes 0.396 No 5.82e-04 No 1.31e-03 No 3.80e-05 No 1.31e-03 No 3.43e-16

gln_gcu - Yes 0.967 - No 1.58e-06 - Yes 0.549 - No 1.39e-05

act gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu gln_gcu_r relu

gcu No 1.39e-05 No 1.58e-06 Yes 0.967 No 4.81e-06 No 9.91e-05 No 3.80e-05 No 3.80e-05 No 3.17e-19

gln_gcu_r - Yes 0.717 - No 4.81e-06 - Yes 0.869 - No 1.39e-05
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4.2.2 Image Classification Problems

4.2.2.1 Mnist

The Tables 29, 30 and 31 present the results, for the Mnist dataset, of the models

that trained with the activation functions respectively: GLN and the functions that

compose it, the Tanh and Sine function; GLN-ReLU and the functions that compose it, the

ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish and Sine

function. The average accuracy values for the test data, their maximum and minimum

values and the standard deviation are presented. It also presents the loss values for this

same data set and its standard deviation, the value of the time, where the lowest loss

value was obtained for the validation set, and its standard deviation. Precision, recall and

f1-score values are also presented. These results were grouped by the parameter variations

performed: batch size, 8 and 64, and the two initialization methods tested, Glorot Normal

and He Normal.

To provide a summarized view of the data distribution and complement the

information in these tables, we present the accuracy data in bloxpot format in the

Figures 61, 63 and 65. Each graph represents the distribution of accuracy results for

each activation function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 62 and 64, 66.

Table 29 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Mnist -
GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

32 GL

99.04 0.10 99.20 98.69 0.03 0.0 58.53 7.94 99.04 99.04 99.04

Sin 98.99 0.07 99.09 98.84 0.03 0.0 59.73 8.40 98.99 98.99 98.99

Tanh 99.09 0.14 99.29 98.75 0.03 0.0 55.00 11.51 99.09 99.09 99.09

GLN

32 HE

98.73 0.10 98.96 98.59 0.04 0.0 62.5 7.19 98.73 98.73 98.73

Sin 98.40 0.09 98.59 98.19 0.05 0.0 65.7 7.15 98.4 98.4 98.4

Tanh 98.76 0.07 98.90 98.62 0.04 0.0 63.1 5.01 98.76 98.76 98.76

GLN

128 GL

98.40 0.15 98.66 97.94 0.05 0.0 60.40 8.50 98.4 98.4 98.4

Sin 98.04 0.14 98.37 97.75 0.06 0.0 66.43 9.36 98.04 98.04 98.04

Tanh 98.43 0.10 98.60 98.21 0.05 0.0 65.10 6.92 98.43 98.43 98.43

GLN

128 HE

97.38 0.19 97.67 96.89 0.08 0.01 65.03 8.51 97.38 97.38 97.38

Sin 96.68 0.13 96.86 96.28 0.10 0.00 70.87 9.06 96.68 96.68 96.68

Tanh 97.51 0.16 97.76 97.11 0.08 0.01 64.47 7.82 97.51 97.51 97.51
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Figure 61 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (MNIST - GLN/Tanh/Sine)

Figure 62 – Box-Plot of weight values α per layer (30 experiments) [MNIST - GLN]

As can be seen in Table 29, the hyperbolic tangent function was the one that

obtained the highest average accuracy value, 99.09%, and the highest maximum value

of 99.29%, between the GLN and Sine functions. This result was obtained for batch

size 32 and the Glorot Normal initialization method. These parameters brought the best

results for all these activation functions. The better performance was also reflected in the

precision, recall and f1-score metrics. As we see in Table 32, only for the 32 HE and 128

HE variations, the distributions of accuracy values for the models with the GLN and Tanh

functions are similar. The model with the hyperbolic tangent function was the one with

the best convergence time, just 55 epochs. However, less stable than other functions in

the same variation.
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From Figure 61, it is clear that the variations had a great impact on the results.

The best batch value as a parameter for the models is the smallest, 32, and the best

initialization method, the normal Glorot, for all activation functions.

The α values are shown in Figure 62, and we can see that all distributions were

very similar in all layers. The first was the one with a slightly more spaced distribution.

Overall, the average value of α was just above 0.6, indicating a slight predominance for

the global function.

Table 30 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Mnist -
GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

32 GL

99.14 0.16 99.34 98.71 0.03 0.0 51.70 11.17 99.14 99.14 99.14

ReLU 99.17 0.10 99.31 98.84 0.03 0.0 56.47 8.99 99.17 99.17 99.17

Sin 98.99 0.07 99.09 98.84 0.03 0.0 59.73 8.40 98.99 98.99 98.99

GLN-ReLU

32 HE

98.79 0.16 99.06 98.39 0.04 0.01 60.8 11.12 98.79 98.79 98.79

ReLU 98.96 0.10 99.17 98.77 0.03 0.00 61.7 7.73 98.96 98.96 98.96

Sin 98.40 0.09 98.59 98.19 0.05 0.00 65.7 7.15 98.4 98.4 98.4

GLN-ReLU

128 GL

98.52 0.14 98.67 97.95 0.05 0.0 62.83 9.03 98.52 98.52 98.52

ReLU 98.61 0.11 98.79 98.16 0.05 0.0 62.50 8.16 98.61 98.61 98.61

Sin 98.04 0.14 98.37 97.75 0.06 0.0 66.43 9.36 98.04 98.04 98.04

GLN-ReLU

128 HE

97.71 0.19 98.13 97.34 0.07 0.01 64.60 9.23 97.71 97.71 97.71

ReLU 97.78 0.19 98.16 97.35 0.07 0.01 65.23 6.06 97.78 97.78 97.78

Sin 96.68 0.13 96.86 96.28 0.10 0.00 70.87 9.06 96.68 96.68 96.68

Figure 63 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (MNIST - GLN-ReLU/ReLU/Sine)

In Table 30, where the results for the GLN-ReLU and ReLU and Sine functions

are presented, the ReLU function was the one that performed best, obtaining the highest
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Figure 64 – Box-Plot of weight values α per layer (30 experiments) [MNIST - GLN-ReLU]

accuracy value, 99.17, in the batch variation equal to 32 and initialization of Glorot Normal

weights. These parameters brought the best results for all these activation functions. The

better performance was also reflected in the precision, recall and f1-score metrics. However,

the model with the GLN-ReLU function was the one that presented the highest maximum

value of 99.34% and also the one that had the shortest convergence time, just 51 epochs.

As we see in Table 32, for variations 32 GL, where the model with ReLU obtained the

best result, and variation 128 HE, the null hypothesis cannot be discarded, indicating

that the distributions of accuracy values for the models with the GLN-ReLU and ReLU

functions show similarity.

From Figure 63, it is clear that the variations also had a great impact on the

results for the tested activation functions. The best batch value was 32 and the best

initialization method was the normal Glorot, for all activation functions. It is also noted

here that the normal HE initialization method was not ideal for both the models with the

ReLU and GLN-ReLU functions, contrary to expectations.

The values of α are presented in Figure 64, and we can see that all distributions

were also very similar in all layers, presenting a graph very similar to the one obtained

in the results in Figure 62. Overall, the average value of α was also slightly above 0.6,

indicating a slight predominance for the global function.

In Table 31, where the results for the GLN-Mish, Mish and Sine functions are

presented, the Mish function was the one that performed best, obtaining the highest

accuracy value, 99.23, in the batch variation equal to 32 and initialization of Glorot

Normal weights. It was also the one that presented the highest maximum value of 99.42%.
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Table 31 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Mnist -
GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

32 GL

99.07 0.15 99.25 98.74 0.03 0.0 52.83 12.18 99.07 99.07 99.07

Mish 99.23 0.11 99.42 98.91 0.03 0.0 56.27 9.71 99.23 99.23 99.23

Sin 98.99 0.07 99.09 98.84 0.03 0.0 59.73 8.40 98.99 98.99 98.99

GLN-Mish

32 HE

98.89 0.09 99.05 98.62 0.03 0.0 62.97 9.36 98.89 98.89 98.89

Mish 99.01 0.07 99.16 98.89 0.03 0.0 59.63 6.66 99.01 99.01 99.01

Sin 98.40 0.09 98.59 98.19 0.05 0.0 65.70 7.15 98.4 98.4 98.4

GLN-Mish

128 GL

98.58 0.12 98.79 98.28 0.05 0.0 61.50 8.60 98.59 98.58 98.58

Mish 98.69 0.10 98.84 98.37 0.04 0.0 62.80 8.34 98.69 98.69 98.69

Sin 98.04 0.14 98.37 97.75 0.06 0.0 66.43 9.36 98.04 98.04 98.04

GLN-Mish

128 HE

97.70 0.17 98.01 97.36 0.07 0.0 66.40 7.86 97.7 97.7 97.7

Mish 97.98 0.11 98.19 97.74 0.07 0.0 66.17 6.65 97.98 97.98 97.98

Sin 96.68 0.13 96.86 96.28 0.10 0.0 70.87 9.06 96.68 96.68 96.68

Figure 65 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (MNIST - GLN-Mish/Mish/Sine)

Figure 66 – Box-Plot of weight values α per layer (30 experiments) [MNIST - GLN-Mish]
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These parameters brought the best results for all these activation functions. The better

performance was also reflected in the precision, recall and f1-score metrics.

As we see in Table 32, for variations 32 GL, where the model with Mish obtained

the best result, and variation 128 HE, the null hypothesis cannot be discarded, indicating

that the distributions of accuracy values for the models with the GLN-Mish and Mish

functions are similar. The model with the GLN-Mish function was the one with the best

convergence time, just 52 epochs. However, less stable than other functions in the same

variation.

From Figure 65, it can be seen that the variations also had a great impact on

the results for the tested activation functions. The best batch value was 32 and the best

initialization method was the normal Glorot, for all activation functions.

The values of α are presented in Figure 66, here it is also clear that all distributions

were also very similar in all layers, presenting a graph very similar to the results in Figure

62 and Figure 64. Overall, the average value of α was also slightly above 0.6, indicating a

slight predominance for the global function.

Table 32 – KS test results for accuracy - MNIST

batch size → 32 128

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln No 6.55e-03 No 3.46e-02 No 1.01e-15 Yes 0.135 No 5.79e-13 Yes 0.808 No 1.69e-17 No 3.46e-02

sin - No 8.74e-05 - No 1.69e-17 - No 2.99e-14 - No 1.69e-17

act relu sin relu sin relu sin relu sin

gln_relu Yes 0.594 No 2.50e-07 No 8.74e-05 No 5.79e-13 No 6.55e-03 No 2.99e-14 Yes 0.135 No 1.69e-17

relu - No 8.25e-12 - No 1.69e-17 - No 1.01e-15 - No 1.69e-17

act mish sin mish sin mish sin mish sin

gln_mish No 8.74e-05 No 2.37e-05 No 5.80e-06 No 1.69e-17 No 6.55e-03 No 1.01e-15 No 4.33e-08 No 1.69e-17

mish - No 5.79e-13 - No 1.69e-17 - No 1.01e-15 - No 1.69e-17

4.2.2.2 Cifar10

The Tables 33, 34 and 35 present the results, for the Cifar10 dataset, of the

models that trained with the activation functions respectively: GLN and the functions that

compose it, the Tanh and Sine function; GLN-ReLU and the functions that compose it, the

ReLU and Sine function; GLN-Mish and the functions that compose it, the Mish and Sine

function. The average accuracy values for the test data, their maximum and minimum
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values and the standard deviation are presented. It also presents the loss values for this

same data set and its standard deviation, the value of the time, where the lowest loss

value was obtained for the validation set, and its standard deviation. Precision, recall and

f1-score values are also presented. These results were grouped by the parameter variations

performed: batch size, 8 and 64, and the two initialization methods tested, Glorot Normal

and He Normal.

To provide a summarized view of the data distribution and complement the

information in these tables, we present the accuracy data in bloxpot format in the

Figures 67, 69 and 71. Each graph represents the distribution of accuracy results for

each activation function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 68, 70 and 72.

Table 33 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Cifar10 -
GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

32 GL

78.44 0.85 80.18 76.76 0.65 0.02 53.87 5.91 79.26 78.44 78.69

Sin 75.05 0.67 76.18 73.46 0.74 0.01 55.60 5.59 76.31 75.05 75.41

Tanh 78.18 0.44 78.97 77.53 0.66 0.02 51.10 3.08 79.09 78.18 78.44

GLN

32 HE

73.82 0.82 75.41 72.56 0.76 0.02 59.03 6.12 75.21 73.82 74.19

Sin 70.06 0.42 70.74 69.28 0.86 0.01 61.93 7.59 72.05 70.06 70.59

Tanh 74.01 0.41 75.27 73.32 0.76 0.01 55.60 6.03 75.58 74.01 74.37

GLN

128 GL

69.87 1.00 71.37 66.87 0.86 0.02 58.37 7.08 71.82 69.87 70.39

Sin 65.29 1.01 66.62 60.98 0.98 0.03 58.47 7.10 67.77 65.29 65.91

Tanh 69.62 0.98 70.79 66.12 0.86 0.02 57.17 8.25 72.02 69.62 70.16

GLN

128 HE

63.85 0.80 65.39 62.29 1.02 0.02 65.70 7.81 67.11 63.85 64.61

Sin 58.18 0.71 59.25 56.62 1.17 0.02 64.20 7.80 61.97 58.18 59.05

Tanh 63.69 0.62 64.72 62.51 1.02 0.02 58.27 6.80 67.09 63.69 64.36

As can be seen in Table 33, the GLN function was the one that obtained the

highest average accuracy value, 78.44%, among the functions that compose it, tanh and

Sine. It was also the one with the highest maximum value of 80.18%. Obtaining this

result for batch size 32 and the Glorot Normal initialization method. These parameters

brought the best results for all these activation functions. However, the one with the

best convergence time, just 51 epochs and with greater stability, was the model with the

hyperbolic tangent function.

As we see in Table 36, only in the 32 HE variation, the distributions of accuracy
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Figure 67 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (CIFAR10 - GLN/Tanh/Sine)

Figure 68 – Box-Plot of weight values α per layer (30 experiments) [CIFAR10 - GLN]

values for the models with the GLN and Tanh functions did not show similarity.

From Figure 67, it can be seen that the variations had a great impact on the

results. The best batch value as a parameter for the models is the lowest of 32 and the

best initialization method is the normal Glorot, for all activation functions.

The values of α are presented in Figure 68, the same behavior of the values of α for

all layers of the model was very similar to the behavior of the values of α for the database

MNIST data. It ranged from approximately 0.5 to 0.75, indicating a slight predominance

also for the global function.

In Table 34, where the results for the GLN-ReLU, ReLU and Sine functions are

presented, the ReLU function was the one that performed best, obtaining the highest

accuracy value, 81.43, and the highest maximum value, 82.83%, in batch variation equal
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Table 34 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Cifar10 -
GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

32 GL

81.19 0.83 81.98 77.30 0.57 0.02 50.93 5.22 81.75 81.19 81.36

ReLU 81.43 1.73 82.83 75.39 0.56 0.04 47.40 5.65 81.95 81.43 81.6

Sin 75.05 0.67 76.18 73.46 0.74 0.01 55.60 5.59 76.31 75.05 75.41

GLN-ReLU

32 HE

77.80 0.54 78.99 76.72 0.65 0.02 58.80 6.27 78.85 77.8 78.1

ReLU 77.65 0.35 78.27 76.92 0.66 0.01 57.23 6.52 78.61 77.65 77.96

Sin 70.06 0.42 70.74 69.28 0.86 0.01 61.93 7.59 72.05 70.06 70.59

GLN-ReLU

128 GL

74.15 0.64 75.58 72.99 0.74 0.02 60.47 6.55 75.67 74.15 74.56

ReLU 72.86 0.69 74.23 71.01 0.79 0.02 61.00 8.22 74.45 72.86 73.32

Sin 65.29 1.01 66.62 60.98 0.98 0.03 58.47 7.10 67.77 65.29 65.91

GLN-ReLU

128 HE

67.64 0.96 69.33 65.68 0.91 0.02 60.90 6.72 70.0 67.64 68.22

ReLU 65.24 0.41 65.95 64.49 0.99 0.01 67.33 9.10 68.05 65.24 66.03

Sin 58.18 0.71 59.25 56.62 1.17 0.02 64.20 7.80 61.97 58.18 59.05

Figure 69 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (CIFAR10 - GLN-ReLU/ReLU/Sine)

to 32 and initialization of Glorot Normal weights. These parameters brought the best

results for all these activation functions. The better performance was also reflected in the

precision, recall and f1-score metrics. Also, the model with the ReLU function was the

one that obtained the best convergence time, just 47 epochs.

As we see in Table 36, only in the 32 HE variation, the distributions of accuracy

values for the models with the GLN-ReLU and ReLU functions showed similarity.

From Figure 69, it can be seen that the variations also had a great impact on

the results for the tested activation functions. The best batch value was 32 and the best

initialization method was the normal Glorot, for all activation functions. It is also noted

here that the normal HE initialization method was not ideal for both the models with the
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Figure 70 – Box-Plot of weight values α per layer (30 experiments) [CIFAR10 -
GLN-ReLU]

ReLU and GLN-ReLU functions, again contradicting expectations.

The values of α are shown in Figure 70, the same behavior of the values of α for

all layers of the model was very similar to the behavior of the values of α in all functions

activation of the GLN type in the MNIST database and the GLN function in the CIFAR10

database. It varied from approximately 0.45 to 0.75, again indicating a slight predominance

also for the global function.

Table 35 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation

values of the epoch and values of precision, recall and f1-score. (Cifar10 -
GLN-Mish/Mish/Sineh)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

32 GL

81.25 1.04 82.34 77.16 0.57 0.02 48.90 5.18 81.79 81.25 81.42

Mish 82.09 1.42 83.18 78.42 0.56 0.03 44.83 5.67 82.44 82.09 82.21

Sin 75.05 0.67 76.18 73.46 0.74 0.01 55.60 5.59 76.31 75.05 75.41

GLN-Mish

32 HE

78.00 0.59 79.07 76.81 0.65 0.02 56.30 5.51 79.01 78.0 78.3

Mish 79.08 0.42 79.81 78.00 0.62 0.01 50.73 3.51 79.75 79.08 79.29

Sin 70.06 0.42 70.74 69.28 0.86 0.01 61.93 7.59 72.05 70.06 70.59

GLN-Mish

128 GL

74.41 1.19 75.72 69.27 0.74 0.03 60.20 9.76 75.94 74.41 74.84

Mish 75.27 0.55 76.18 74.03 0.72 0.01 60.07 8.87 76.3 75.27 75.58

Sin 65.29 1.01 66.62 60.98 0.98 0.03 58.47 7.10 67.77 65.29 65.91

GLN-Mish

128 HE

67.92 1.04 69.42 65.81 0.91 0.03 59.80 9.08 70.51 67.92 68.55

Mish 68.32 0.41 69.03 67.22 0.90 0.01 70.97 9.64 70.4 68.32 68.87

Sin 58.18 0.71 59.25 56.62 1.17 0.02 64.20 7.80 61.97 58.18 59.05

The Mish function obtained the highest accuracy value compared to the GLN-Mish

and Sine functions, as can be seen in Table 35. It obtained an average of 82.09% and the

highest maximum value, 83.18%. The lowest epoch value, 44, was also obtained by the
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Figure 71 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (CIFAR10 - GLN-Mish/Mish/Sine)

Figure 72 – Box-Plot of weight values α per layer (30 experiments) [CIFAR10 -
GLN-Mish]

Mish function. These parameters brought the best results for all these activation functions.

The better performance was also reflected in the precision, recall and f1-score metrics.

As we see in Table 36, in all variations, the null hypothesis can be discarded,

indicating that the distributions of accuracy values for the models are not similar.

From Figure 71, it can be seen that the variations also had a great impact on

the results for the tested activation functions. The best batch value was 32 and the best

initialization method was the normal Glorot, for all activation functions.

The values of α are shown in Figure 72, the same behavior of the values of α for

all layers of the model was very similar to the behavior of the values of α in all functions

activation of the GLN type in the MNIST database and the GLN function in the CIFAR10

database. It varied from approximately 0.45 to 0.75, again indicating a slight predominance
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for the global function.

Table 36 – KS test results for accuracy - CIFAR10

batch size → 32 128

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln No 1.69e-17 Yes 0.071 No 1.69e-17 No 3.46e-02 No 1.69e-17 Yes 0.594 No 1.69e-17 Yes 0.594

sin - No 1.69e-17 - No 1.69e-17 - No 1.01e-15 - No 1.69e-17

act relu sin relu sin relu sin relu sin

gln_relu No 2.93e-04 No 1.69e-17 Yes 0.135 No 1.69e-17 No 2.50e-07 No 1.69e-17 No 2.99e-14 No 1.69e-17

relu - No 1.01e-15 - No 1.69e-17 - No 1.69e-17 - No 1.69e-17

act mish sin mish sin mish sin mish sin

gln_mish No 4.33e-08 No 1.69e-17 No 6.53e-09 No 1.69e-17 No 9.00e-04 No 1.69e-17 No 1.56e-02 No 1.69e-17

mish - No 1.69e-17 - No 1.69e-17 - No 1.69e-17 - No 1.69e-17

4.2.2.3 Lung Colon Cancer

The Tables 37, 38 and 39 present the results, for the Lung Colon Cancer dataset,

of the models that trained with the activation functions respectively: GLN and the

functions that compose it, the Tanh and Sine function; GLN-ReLU and the functions that

compose it, the ReLU and Sine function; GLN-Mish and the functions that compose it,

the Mish and Sine function. The average accuracy values for the test data, their maximum

and minimum values and the standard deviation are presented. It also presents the loss

values for this same data set and its standard deviation, the value of the time, where the

lowest loss value was obtained for the validation set, and its standard deviation. Precision,

recall and f1-score values are also presented. These results were grouped by the parameter

variations performed: batch size, 8 and 64, and the two initialization methods tested,

Glorot Normal and He Normal.

To provide a summarized view of the data distribution and complement the

information in these tables, we present the accuracy data in bloxpot format in the

Figures 73, 75 and 77. Each graph represents the distribution of accuracy results for

each activation function tested in the 4 parameter variations performed.

The values of α per layer of the neural network are also presented in bloxpot format

in the Figures 74, 76 and 78.

As can be seen in Table 37, The hyperbolic tangent function was the one that

obtained the highest average accuracy value, 97.24%, between the GLN and Sine functions.
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Table 37 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Lung Colon

Cancer - GLN/Tanh/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN

32 GL

96.96 0.70 97.87 94.90 0.09 0.02 53.73 13.13 96.97 96.96 96.96

Sin 96.97 0.37 97.57 96.13 0.08 0.01 52.57 9.04 96.98 96.97 96.97

Tanh 97.24 0.68 97.80 94.97 0.08 0.02 54.07 11.36 97.24 97.24 97.24

GLN

32 HE

96.85 1.08 97.90 92.03 0.09 0.03 46.23 12.94 96.86 96.85 96.85

Sin 97.19 0.44 97.87 96.03 0.08 0.01 46.43 7.84 97.2 97.19 97.19

Tanh 96.85 0.45 97.43 95.67 0.08 0.01 43.97 9.31 96.87 96.85 96.85

GLN

128 GL

78.53 20.74 97.43 33.30 0.56 0.63 36.63 23.53 78.49 78.53 78.51

Sin 75.90 24.29 98.27 28.77 0.61 0.66 40.67 29.84 78.69 75.9 76.42

Tanh 89.59 13.49 98.00 37.67 0.25 0.29 47.20 22.89 89.79 89.59 89.64

GLN

128 HE

88.52 20.27 97.77 32.27 0.34 0.66 52.7 21.44 88.64 88.52 88.53

Sin 95.26 8.01 97.53 52.90 0.12 0.18 56.4 12.21 95.27 95.26 95.25

Tanh 91.52 14.66 97.77 37.93 0.18 0.27 55.8 18.13 91.45 91.52 91.44

Figure 73 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (Lung Colon Cancer - GLN/Tanh/Sine)

This result was obtained for batch size 32 and the Glorot Normal initialization method.

These parameters brought the best results for the Tanh and GLN functions. While the

sine function showed better results in the 32 HE configuration. As we see in Table 40,

the KS test demonstrates that all distributions of accuracy values for the models with the

GLN, Tanh and Sine functions showed similarity.

The model with the hyperbolic tangent function also obtained the best convergence

time, just 43 epochs. While the model with the Sine function, in the 128 GL configuration,

presented the highest maximum value of 98.27%. However, also in this variation, it was

the one that presented the lowest minimum value, 28.77. There is less stability of the

results. This instability also occurred with all activation functions in this variation, as we
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Figure 74 – Box-Plot of weight values α per layer (30 experiments) [Lung Colon Cancer -
GLN]

can see in Figure 73.

The α values are shown in Figure 74, the same behavior of the α values for all

layers of the model was also very similar to those presented in the other databases. The

variation in all layers was between approximately 0.5 and 0.75, also indicating a slight

predominance for the global function.

Table 38 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Lung Colon

Cancer - GLN-ReLU/ReLU/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-ReLU

32 GL

97.62 0.99 98.73 93.07 0.06 0.02 55.70 14.42 97.62 97.62 97.62

ReLU 98.72 0.43 99.33 97.57 0.03 0.01 60.23 9.14 98.72 98.72 98.72

Sin 96.97 0.37 97.57 96.13 0.08 0.01 52.57 9.04 96.98 96.97 96.97

GLN-ReLU

32 HE

97.14 0.54 97.90 95.30 0.08 0.01 47.40 16.94 97.14 97.14 97.14

ReLU 98.39 0.38 98.90 97.03 0.04 0.01 54.87 8.72 98.39 98.39 98.39

Sin 97.19 0.44 97.87 96.03 0.08 0.01 46.43 7.84 97.2 97.19 97.19

GLN-ReLU

128 GL

52.75 22.21 98.20 31.00 1.05 0.55 20.80 16.59 58.36 52.75 54.11

ReLU 33.44 0.42 34.17 32.67 1.11 0.00 11.00 0.00 81.56 33.44 44.87

Sin 75.90 24.29 98.27 28.77 0.61 0.66 40.67 29.84 78.69 75.9 76.42

GLN-ReLU

128 HE

85.04 24.25 97.63 33.4 0.32 0.50 50.93 21.60 85.11 85.04 85.04

ReLU 58.31 23.71 98.30 34.1 0.79 0.42 23.93 21.67 62.86 58.31 57.95

Sin 95.26 8.01 97.53 52.9 0.12 0.18 56.40 12.21 95.27 95.26 95.25

As can be seen in Table 38, the ReLU function was the one that obtained the

highest average accuracy value, 98.72%, between the GLN-ReLU and Seno functions, and

which presented the highest maximum value of 99.33% . These results were obtained for

batch size 32 and the Glorot Normal initialization method. These same parameters were
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Figure 75 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (Lung Colon Cancer - GLN-ReLU/ReLU/Sine)

Figure 76 – Box-Plot of weight values α per layer (30 experiments) [Lung Colon Cancer -
GLN-ReLU]

also ideal for the GLN-ReLU function, while for the sine function it was 32 HE. As we see

in Table 40, the KS test demonstrated that GLN-ReLU and ReLU are not statistically

similar in any variation. Furthermore, the model with the Sine function was the one

that obtained the best convergence time, only 46 epochs and greater stability, among the

variations that obtained the best results.

As we can see in Figure 75, the model with the ReLU function was unable to

converge when configured with batch 128 and GL initialization method. It also did not

perform very well with the HE initialization method in this same batch size, although it

managed to converge with some samples. While models with the GLN-ReLU and sine

functions had better results. It can be seen that this difficulty in convergence did not

change the behavior of the alpha values, as we can see in Figure 76. Continuing to have
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results very similar to the other distribution of α values in other databases.

Table 39 – Average, maximum, minimum and standard deviation values of accuracy,
average and standard deviation values of loss, average and standard deviation
values of the epoch and values of precision, recall and f1-score. (Lung Colon

Cancer - GLN-Mish/Mish/Sine)

act batch size ini. weight acc_mean acc_std max min loss_mean loss_std epoch_mean epoch_std precision recall f1-score

GLN-Mish

32 GL

97.77 0.80 98.63 94.50 0.06 0.02 56.03 17.39 97.78 97.77 97.77

Mish 98.36 0.26 98.80 97.77 0.05 0.01 42.20 7.55 98.36 98.36 98.36

Sin 96.97 0.37 97.57 96.13 0.08 0.01 52.57 9.04 96.98 96.97 96.97

GLN-Mish

32 HE

97.35 0.49 98.03 96.17 0.07 0.01 47.53 14.58 97.36 97.35 97.35

Mish 97.32 0.28 97.97 96.77 0.07 0.01 35.17 4.49 97.33 97.32 97.32

Sin 97.19 0.44 97.87 96.03 0.08 0.01 46.43 7.84 97.2 97.19 97.19

GLN-Mish

128 GL

44.75 17.41 97.07 32.63 1.25 0.63 17.10 9.79 49.61 44.75 45.91

Mish 33.64 0.52 34.60 32.93 1.14 0.02 11.00 0.00 53.55 33.64 40.72

Sin 75.90 24.29 98.27 28.77 0.61 0.66 40.67 29.84 78.69 75.9 76.42

GLN-Mish

128 HE

71.54 31.38 97.53 31.87 0.61 0.69 42.53 27.85 72.11 71.54 71.47

Mish 55.19 24.63 98.40 32.97 0.82 0.42 23.50 22.44 68.31 55.19 55.73

Sin 95.26 8.01 97.53 52.90 0.12 0.18 56.40 12.21 95.27 95.26 95.25

Figure 77 – Box-Plot of the accuracy values of the test set by activation function (30
experiments). (Lung Colon Cancer - GLN-Mish/Mish/Sine)

The model with the Mish function obtained the highest accuracy value compared

to the GLN-Mish and Sine functions, as can be seen in Table 39, average of 98.36%, the

highest maximum value, 98.80%, for batch size 32 and the Glorot Normal initialization

method. As shown in Table 40, the KS test demonstrated that GLN-ReLU and ReLU are

statistically similar only in the 32 HE variation. The model with the Mish function was

also the one that presented the best convergence time, 35 epochs, with the HE Normal

weights initialization method.
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Figure 78 – Box-Plot of weight values α per layer (30 experiments) [Lung Colon Cancer -
GLN-Mish]

The α values are presented in Figure 74, the same behavior of the α values for all

layers of the model was also very similar to those presented in the other databases and in

the other variations. The values of α in all layers ranged from approximately 0.5 to 0.75,

also indicating a slight predominance for the global function.

Table 40 – KS test results for accuracy - Lung Colon Cancer

batch size → 32 128

ini. weight → GL HE GL HE

KS-test → Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values Similar p-values

act sin tanh sin tanh sin tanh sin tanh

gln Yes 0.808 Yes 0.071 Yes 0.239 Yes 0.393 Yes 0.393 No 2.53e-03 Yes 0.393 Yes 0.071

sin - No 9.00e-04 - No 1.56e-02 - No 1.56e-02 - Yes 0.999

act relu sin relu sin relu sin relu sin

gln_relu No 6.53e-09 No 1.28e-06 No 2.99e-14 Yes 0.999 No 8.74e-05 No 6.55e-03 No 8.74e-05 Yes 0.239

relu - No 1.01e-15 - No 2.99e-14 - No 1.01e-15 - No 4.33e-08

act mish sin mish sin mish sin mish sin

gln_mish No 2.53e-03 No 2.50e-07 Yes 0.239 Yes 0.393 No 6.55e-03 No 5.80e-06 No 3.46e-02 No 2.53e-03

mish - No 1.69e-17 - Yes 0.239 - No 1.01e-15 - No 4.33e-08
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5 Conclusions

This work aimed to evaluate the performance of an artificial neuron called GLN in

image compression, multiclass classification and image classification problems, expanding

the scope of previously carried out tests. This neuron has an activation function composed

of two complementary mathematical functions, one with a global characteristic and the

other with a local characteristic. These characteristics are given by the behavior of the

chosen functions. The global behavior function must present a variation characteristic

throughout its domain, while the local behavior function presents variation in only a

fraction of its domain. In this work, the Sine and Growing Cossine Unit functions were

chosen as global functions, and the hyperbolic tangent, ReLU, and Mish functions as local

functions. These new functions composed different GLN neurons, differing from the original

proposal with global function sine and local function hyperbolic tangence (FERREIRA et

al., 2021). However, it is worth highlighting that other functions could also be used, as

long as they comply with global and local behavioral requirements.

This work was divided into two distinct phases. In the first phase, the GLN neuron

was tested in an image compression problem and, in the second phase, in addition to

the traditional GLN, composed of the Tanh and Sine functions. Other variations were

also tested such as the GLN-ReLU neuron (composition of the Sine and ReLU functions),

GLN-Mish (composition of Sine and Mish functions), GLN-GCU (composition of GCU

and Tanh functions), and GLN-GCU-R (composition of GCU and ReLU functions) in two

new problem categories, multiclass classification and classification of image.

For the first phase, three similar models of an Autoencoder MLP neural network

with different activation functions were created. The first with GLN and the others using

neurons with conventional activation functions. One with the hyperbolic tangent (Tanh)

activation function and the other with the Sine function. Various sizes of bottleneck layers

were tested to compress the training images from the CIFAR10 database by 75%, 63%,

50%, 38%, and 25% relative to their original sizes. After training the models, compressed

test images were generated by Encoder. These images, with reduced dimensionality, were

then trained and tested in a WRN neural network and the SVM algorithm to verify the

classification accuracy. All of these models were run 48 times to obtain meaningful samples,

given the stochastic nature of neural networks.
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As a result of this first phase, the latent representation learned by the autoencoder

model with the GLN activation function was the most robust for compressions not exceeding

50%, in a WRN neural network, and the highest precision for compressions above 50%,

when using the SVM Classifier. Its use also brings superior performance in training speed,

in all compression variations, compared to the isolated activation functions used in the

experiment, which make up the GLN neuron itself. The ability of this neuron to adapt to

image classification problems has also been proven.

As a behavioral analysis of the GLN model, it was found that the weight value α

was consistent with what was expected, given the tendency to generalize the learning of

neural networks. For larger compressions, the network tends to learn and represent more

general or global information in the data, with less detail, given the restriction on the

flow of auto-associative information. With the increase in the number of neurons in the

bottleneck, resulting in a decrease in the compression of the information flow, the network

starts to represent information with greater weight for details, that is, it starts to increase

the importance of the local component, logically implying an increase in auto-associative

performance.

A second phase of this work was carried out to expand the GLN experiments to other

types of problems not yet studied, multiclass classification and image classification problems,

and verify the performance of the GLN neuron using other activation functions. At this

stage, ten similar models of an MLP neural network with different activation functions were

created for the multiclass classification problem, GLN, GLN-ReLU, GLN-Mish, GLN-GCU,

GLN-GCU-R, Tanh, Seno, GCU, ReLU and Mish. For the image classification problem,

ten other similar models of a convolutional neural network (CNN) were created with the

same activation functions.

The results of the second phase for the first problem addressed showed that the

models using the GLN, GLN-ReLU and GLN-Mish functions performed as well as the best

results of the models with the isolated functions, Tanh, ReLu and Mish, and in several cases

superior to them. They were also the models that obtained the best convergence speeds,

where GLN-Mish had the shortest time in Breast Cancer and Yeast and GLN-ReLU in

Wine.

In general, comparing all models, for the multiclass classification problem, the

GLN-Mish and Mish activation functions were the functions that performed best. Each
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had the highest average accuracy value among the other activation functions in two of the

four databases evaluated for this type of problem. While the Mish function stood out in

the Iris and Wine databases, the GLN-Mish function was the one that performed best for

the Breast Cancer and Yeast datasets. These databases were the most challenging among

those selected, which leads to the conclusion that the adaptive and trainable functions

used, especially GLN, are ideal for more complex problems. For simpler problems, the

computational cost ends up being a disadvantage, since isolated, simpler functions have a

lower computational cost and solve these problems well.

In contrast, it did not have a superior or statistically equivalent performance in

most experiments for solving image classification problems with convolutional networks.

A possible explanation is that in very deep networks such as the VGG19 network, the

high complexity of the GLN model has a negative impact on its performance. We can also

assume that the sparsity characteristic (neurons have zero activation), very present in the

ReLU functions, and also in the Mish function, is an important factor, allowing better

generalization in these models, with less risk of overfitting and consequently resulting in

higher accuracy.

Comparing GLN with other activation functions recently proposed and evaluated

for the image classification problem, such as APALU (SUBRAMANIAN et al.,

), ErfReLU (RAJANAND; SINGH, 2024), TanhSoft (BISWAS et al., 2021) and

LEAF (BODYANSKIY; KOSTIUK, 2023), we can see a difference in the results, despite

having been tested on similar convolutional networks, VGG16 and VGG19, and the same

databases, MNIST and CIFAR10. While GLN did not obtain good overall results for

image classification problems, all of these functions, which are similar to GLN because

they are trainable and also because they do not have zero derivatives throughout their

domain, obtained superior results in the vast majority of cases presented.

However, significant methodological differences are observed, without a robust

statistical analysis, since results were presented based on few training rounds. An

average accuracy was captured for only 5 samples (SUBRAMANIAN et al., ), the best

results for each function only (BISWAS et al., 2021), or even the result of a single

execution (BODYANSKIY; KOSTIUK, 2023). In any case, an interesting aspect was

the observation that there was a tendency towards rectification of the LEAF activation

function. Both LEAF-as-Tanh and LEAF-as-Sigmoid, LEAF functions initially configured
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to behave similarly to Tanh and Sigmoid functions respectively, showed a tendency to

"rectify" themselves in convolutional networks, which suggests advantages in using linear

functions in CNNs.

Models that use periodic activation functions, especially Growing Cosine Unit

(GCU), presented the worst performances in most tests and parameter variations. These

evaluated parameters may not have contributed to the convergence of the network in these

models, since the inadequate choice of parameters can lead to very slow convergence or

the inability to leave local minima, which is already naturally difficult due to the presence

of multiple local minima (PARASCANDOLO et al., 2017). As the original article on the

GCU function used a custom VGG 19 architecture and provided few details about the

parameters used, we conclude that the parameters used in this work may not have brought

the best potential of this activation function.

This poor performance of oscillatory functions, despite having influenced the

performance of the GLN, made the potential for using this trainable neuron even more

evident, since it adapted as expected, seeking the best combinations to reach at least

the closest or until achieving a performance superior to that obtained by independent

functions. Thus, it helps reduce the need to manually choose activation functions for

different layers and architectures of neural networks, given their ability to automatically

and optimally learn the best composition between functions according to different input

data during training.

Given the observed results and the limitations of this experiment, we point out

some promising paths that can be explored in future work to increase our understanding

of trainable functions with two complementary characteristics such as GLN.

We observed from the final results that the hyperparameters used in the models

may not have been optimal for periodic functions. This led to one of the main limitations

identified after the experiments. Therefore, a potential future study could conduct a

more thorough and refined investigation of these parameters, including testing new ones,

such as improved weight initialization methods specifically tailored for these oscillatory

functions. The use of hyperparameter optimization techniques, such as grid search or

genetic algorithms, may help identify better combinations across a broader range of options

more efficiently.

Another important path is to carry out experiments on more modern and
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competitive network architectures, such as Transformers, EfficientNets, and ResNet network

architectures, among others. Evaluating the performance of GLN and its derivations on

these other architectures can reveal new opportunities and challenges.

The application of GLN-type neurons to each neuron in the neural network is

another promising line of investigation. In current research, alpha weights are calculated

per layer. In other words, these weights are the same for all neurons in the same layer.

However, allowing each neuron to define its own value, choosing between global and local

characteristics, or some composition of the two, can increase the representation capacity of

the network, as has already been demonstrated in other works (DUSHKOFF; PTUCHA,

2016; ERTUğRUL, 2018).
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.1 Breast Cancer

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 79 – Heatmap Breast Cancer (Tanh)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 80 – Heatmap Breast Cancer (Sin)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 81 – Heatmap Breast Cancer (GLN)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 82 – Heatmap Breast Cancer (ReLU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 83 – Heatmap Breast Cancer (GLN-ReLU)
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(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 84 – Heatmap Breast Cancer (Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 85 – Heatmap Breast Cancer (GLN-Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 86 – Heatmap Breast Cancer (GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 87 – Heatmap Breast Cancer (GLN-GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 88 – Heatmap Breast Cancer (GLN-GCU-ReLU)
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.2 Iris

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 89 – Heatmap Iris (Tanh)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 90 – Heatmap Iris (Sin)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 91 – Heatmap Iris (GLN)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 92 – Heatmap Iris (ReLU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 93 – Heatmap Iris (GLN-ReLU)
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(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 94 – Heatmap Iris (Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 95 – Heatmap Iris (GLN-Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 96 – Heatmap Iris (GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 97 – Heatmap Iris (GLN-GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 98 – Heatmap Iris (GLN-GCU-ReLU)
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.3 Wine

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 99 – Heatmap Wine (Tanh)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 100 – Heatmap Wine (Sin)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 101 – Heatmap Wine (GLN)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 102 – Heatmap Wine (ReLU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 103 – Heatmap Wine (GLN-ReLU)
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(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 104 – Heatmap Wine (Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 105 – Heatmap Wine (GLN-Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 106 – Heatmap Wine (GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 107 – Heatmap Wine (GLN-GCU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 108 – Heatmap Wine (GLN-GCU-ReLU)
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.4 Yeast

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 109 – Heatmap Yeast (Tanh)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 110 – Heatmap Yeast (Sin)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 111 – Heatmap Yeast (GLN)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 112 – Heatmap Yeast (ReLU)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 113 – Heatmap Yeast (GLN-ReLU)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE

Figure 114 – Heatmap Yeast (Mish)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 115 – Heatmap Yeast (GLN-Mish)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 116 – Heatmap Yeast (GCU)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 117 – Heatmap Yeast (GLN-GCU)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 118 – Heatmap Yeast (GLN-GCU-ReLU)
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.5 Mnist

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 119 – Heatmap Mnist (Tanh)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 120 – Heatmap Mnist (Sin)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 121 – Heatmap Mnist (GLN)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 122 – Heatmap Mnist (ReLU)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 123 – Heatmap Mnist (GLN-ReLU)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE

Figure 124 – Heatmap Mnist (Mish)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 125 – Heatmap Mnist (GLN-Mish)
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.6 CIFAR10

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 126 – Heatmap CIFAR10 (Tanh)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 127 – Heatmap CIFAR10 (Sin)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 128 – Heatmap CIFAR10 (GLN)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 129 – Heatmap CIFAR10 (ReLU)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 130 – Heatmap CIFAR10 (GLN-ReLU)
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(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE

Figure 131 – Heatmap CIFAR10 (Mish)

(a) 8-GL (b) 8-HE

(c) 64-GL (d) 64-HE
Figure 132 – Heatmap CIFAR10 (GLN-Mish)
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.7 Lung Colon Cancer

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 133 – Heatmap Lung Colon Cancer (Tanh)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 134 – Heatmap Lung Colon Cancer (Sin)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 135 – Heatmap Lung Colon Cancer (GLN)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 136 – Heatmap Lung Colon Cancer (ReLU)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 137 – Heatmap Lung Colon Cancer (GLN-ReLU)
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(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 138 – Heatmap Lung Colon Cancer (Mish)

(a) 8-GL (b) 8-HE (c) 64-GL (d) 64-HE

Figure 139 – Heatmap Lung Colon Cancer (GLN-Mish)
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