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Abstract

Before the detection of gravitational waves by LIGO in 2015, a new era of possible

knowledge about the cosmos has emerged. With this, the possibility of analyzing these

detection data and refining techniques that can characterize it. Therefore, we suggest the

development of an algorithm capable of characterizing gravitational wave signals, more

precisely inferring the gravitational wave masses caused by binary systems, and we use

the low computational cost approach. With that, we analyse the simulated signals of

gravitational waves, using only the spiral phase of the wave, applying artificial neural

networks to analyze these signals, as the output of the network we obtain the masses value

of both objects. As a step of sophistication of our algorithm, we use signals from waves

detected by LIGO to consolidate its suitability for real data. As a preliminary result of

this experiment, we were able to infer the data with minimized error in up to 12% of

difference with the data presented by LIGO.

Keywords: Gravitational waves; Neural networks; Astroinformatics.



Resumo

Diante da detecção de ondas gravitacionais pelo LIGO, em 2015, uma nova era de possível

conhecimento sobre o cosmos surgiu. Com isso a possibilidade de análise desses dados de

detecção e refinamento de técnicas que caracterizam essas detecções. Deste modo sugerimos

o desenvolvimento de um algoritmo capaz de caracterizar sinais de ondas gravitacionais,

mais precisamente inferir as massas de ondas gravitacionais provocadas por sistemas

binários, e utilizamos a abordagem de baixo custo computacional. Com isso analisando os

sinais simulados de ondas gravitacionais, fazendo uso apenas da fase espiral da onda, por

seguinte aplicamos redes neurais artificiais para analisar estes sinais, como saída da rede

obtemos o valor de ambas as massas. Como um passo de sofisticação do nosso algoritmo,

utilizamos sinais de ondas detectadas pelo LIGO para consolidar sua aptidão para dados

reais. Como resultado preliminar deste experimento conseguimos inferir os dados com erro

minimizado em até 12% de diferença com os dados apresentados pelo LIGO.

Palavras-chave: Ondas gravitacionais; Redes neurais; Astroinformática.
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1 Introduction

For the first time, in the year 2015, gravitational waves were detected directly

(ABBOTT; AL., 2016). This event occurred almost 100 years after Einstein’s publication of

the Theory of General Relativity, where gravitational waves are described for the first time

(EINSTEIN, 1916). A century ago there was no technology advanced enough to evidence

Einstein’s theory, but in 2015, after 30 years of being built the Laser Interferometer

Gravitational-Wave Observatory (LIGO) detected gravitational waves for the first time

directly.

The emphasis on the word directly occurs because gravitational waves had already

been observed indirectly, by the 1993 Nobel Prize winners in Physics, Russell A. Hulse

and Joseph H. Taylor, Jr (Nobel Prize in Physics, 2019). Physicists found a binary pulsar

in 1974, and through observations, it was calculated that the binary pulsar would be

releasing gravitational waves (Hulse; Taylor, 1975). Over the years, this pulsar matched the

predicted behavior. Thus, through this observation, the existence of gravitational waves

was confirmed. The entire observation was made through telescopes, so the source rescued

was electromagnetic waves, what we can call the indirect observation of gravitational waves

(LIGO Laboratory, 2015).

The gravitational waves released by the Hulse and Taylor binary pulsar or detected

by LIGO are space-time vibrations, the gravity emitted by these waves is capable of

deforming space-time and propagating through the Universe. With this, it can be said

that gravitational waves are generated by every accelerated non-spherical object, so as we

speak, we scratch a paper or when a rocket is launched these waves are created. Although

gravitational waves are generated all the time, knowing that gravity is the weakest known

force, these waves have a very small magnitude (WHEELER., 2008).

Thus, we still do not have enough technology to simulate gravitational waves

physically on Earth, so gravitational wave detection occurs from astrophysical phenomena,

with a large amount of energy, such as the merger of two black holes, the merger of neutron

stars, or waves coming from the Big Bang itself (THORNE, 2014). Taking as an example

the first observation made by LIGO, which was of a merger of two black holes (ABBOTT;

AL., 2016), this phenomenon detected waves of magnitude 10−21 meters (SCHUTZ, 2009;

HOBSON et al., 2006). Which is a million times smaller than the size of a proton, that
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has a magnitude of 10−15 m (BEZGINOV et al., 2019).

The detection of these waves brought the possibility of more comprehensive

astrophysical observations, where until that point only electromagnetic waves were the

source of observation used by us. Unlike electromagnetic waves, which are vibrations

of electromagnetic fields, as already said, gravitational waves are the propagation of

the vibration of space-time itself. As these waves have less external interference than

electromagnetic waves, they enable greater accuracy of your signal and greater integrity of

information about your source (LIGO Laboratory, 2015).

Knowing it, this work aims to extract information about the bodies capable of

generating gravitational waves. We know that to generate these waves we need very

large objects, at a solar mass scale, so we try to infer the mass of these gravitational

wave-generating objects. We use neural network algorithms, which is a universal function

approximator (HAYKIN, 1999), to extract the mass information. Although gravitational

waves have been detected and their signal is known, we have few samples of this

phenomenon, and for good training of a neural network, it is necessary a significant

sample of patterns. To overcome this lack of data, we used data that simulate the shape

of the gravitational wave as training networks.

This project was developed in three different experiments, in which continuous

improvement of the inference was sought throughout the experiments. The first experiment

yielded an article published in CBIC XVI, the article published only analyzed simulated

data, in this text, all experiments rely on experimentation with data from LIGO

observations. The second and third experiments have the result of this thesis.

1.1 Justification

In the past, only electromagnetic waves were sources of information about the

cosmos, today we can also count on gravitational waves. These waves, as already mentioned,

carry with them more precision about the data from their source than electromagnetic

waves, since they have less interaction with the medium. That way gravitational waves

bring the possibility of understanding open questions about the universe (LIGO Laboratory,

2015). Most of the category observed from LIGO is about the merger of two large objects,

it is a type of phenomenon that occurs in fractions of a second and is capable of causing
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waves that travel thousands of light years. In this category, two objects merge into one.

Related objects can be neutron stars and black holes. Singular objects may also be able

to generate gravitational waves, such as pulsars. Also, there is the possibility of capturing

the wave signal that originated the universe in the Big-Bang (WHEELER., 2008).

With that, we need to learn to process and extract information from these

gravitational wave signals in an increasingly efficient way and with the wide collaboration

of the scientific community. Considering the resource limitations, we tried in this work to

present a study using only a personal computer to process gravitational wave detection

data.

We will study here the merger events of two large astrophysical objects, a binary

system. Within these events we will only analyze the spiral phase of this wave, better

described in Chapter 2.

1.2 Related Works

HAEGEL; HUSA, in 2020 uses deep neural networks to infer the remnants mass

and spin magnitude of the merge of two black holes. It is capable of producing an efficient

method to predict the remnant black hole in a binary black hole merger. The performance

of its deep neural network is compared with the accuracy of the LIGO algorithm. Although

both experiments work with masses, the cited work considers gravitational waves given

from a relativistic basis, while our data only considers the numerical and post-Newtonian

parts. We also differ in the desired output, we want to understand the mass value of both

black holes before the merge occurs, in the cited work, the interest is in understanding the

characteristics of the black hole produced through the merge.

GEORGE, in 2017 presents the use of Deep Learning for signal analysis, indicating

whether those waves are gravitational wave detections, and also makes an estimation of

the wave parameters. The article uses LIGO data and shows that Convolutional Neural

Networks can be used for both wave detection and parameter estimation. They also

knowledge that the techniques we have developed can be useful in many other domains

of science and technology. Again we have the use of the neural network to analyze

gravitational waves signals, although they focus mainly on having a real time signal

detection, differentiating on our experiments that have the detection in hand and later
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process the signal to characterize the detection.

SANTOS et al., in 2020, show a new form of calculating the ring-down time for

the detection of the gravitational waves, again with LIGO data. It also presents the use of

neural networks and a small computational capacity, calling the approach simple. The

results show that the methodology proposed was able to define the ring-down time for

all the binary black hole events, including the events where LIGO cannot calculate its

ring-down time. Yet we have an experiment that is able to characterize gravitational wave

events using their signals, but still a different outcome than ours.

All the works presented here use artificial neural networks and gravitational wave

signals to archive their results. However, although working with the same database, LIGO

detection database, and using similar techniques, these researches are different in their

objective. Thus, they can be considered complementary between them.

1.3 Objective

The general and specific objectives that will guide the conduct of this exploration

will be presented below. The general idea defines the purpose of the study and the specifics

characterize the stages or phases of the design.

1.3.1 General Objective

Although LIGO has made its data available and even a library in Python, making

a characterization of these waves through their signal is still an arduous task that requires

a lot of computational power. Therefore, several academic works try to invest in the use of

machine learning, whether to detect if the signal is a gravitational wave or to characterize

a wave signal.

We propose with this thesis to extract physical characterization of the objects

capable of generating gravitational wave signals with significant amplitude using a personal

computer. Showing that it is possible to generate simulations of gravitational waves

and process these simulations to extract information from them using Machine Learning

(ML), more specifically Artificial Neural Networks (ANN). Here, we are just looking at

the generation of gravitational waves coming from an astronomical binary system and
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determined to extract information from the spiral phase of the wave on the value of the

masses of the two waveform objects before they merge into one.

1.3.2 Specific Objective

To achieve the general objective, the following specific objectives were defined:

• Study of computational physical modeling of gravitational waves using a personal

computer;

• Computational simulation of the spiral phase of astrophysical binary systems;

• Artificial neural network training with the simulated data of these waves;

• Use the neural network model algorithm to infer the masses of the objects that

characterized gravitational wave simulations;

• Use the modeled neural network algorithm to infer masses of the objects that

generated gravitational wave signals captured by LIGO data.

1.4 Document Structure

In the next chapter, we will delve deeper into the issues of gravitational waves,

emphasizing the description of waves generated from the merger of binary objects. In the

Chapter 3, we will present a brief introduction to neural networks, considering only the

networks used in this text. Soon after, in Chapter 4, 5 and 6, we will explain the stages of

experimentation and the methodologies used, where the chronological order of the works

developed here are presented, with their respective approaches to the pursuit of the most

accurate astronomical bodies’ mass information inference. Finally, we will present the

conclusions generated from our experiments.
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2 Gravitational Waves

Space, as we cognize, is seen as a three dimension entity, but after Einstein’s

theory of general relativity, time was grouped with it, forming what is called space-time a

continuous of four dimensions. In that theory the physical behavior of gravity is explained,

although Newton’s gravity laws could still be applied, the instant an instantaneous force

that comes from bodies is now described as space-time bending. A body with a significant

density could cause the bend of the Universe (Figure 1). Objects such as black holes,

planets, and other with significant density are able to perform it on a considerable scale

(SCHUTZ, 2009).

Figure 1 – The bend that the Sun causes in space-time and the smaller bend caused by
the Earth. Credit: (T. Pyle/Caltech/MIT/LIGO Lab, 2016)

Still, in the theory of general relativity, gravitational waves are called the vibration

of the space-time. As said before, gravitational waves are produced by every accelerated

and not spherical object. To visualize it we can imagine a rock being thrown on a lake,

the rock falls, and the water starts to propagate waves from the same spot where the rock

landed. That is how we can visually imagine gravitational waves, however, if in that event

the force transmitted from the rock propagates on the water, the gravitational waves case

waves reverberate space-time itself (WHEELER., 2008).

Historically we have tremendous discoveries about the cosmos only by analyzing

electromagnetic waves, and still much more to be found. On the other hand, gravitational

waves are unrelated to electromagnetic waves, this creates an opportunity for an entirely
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new domain of observation. When we compare those two waves, electromagnetic and

gravitational, notwithstanding both travel at the same speed, the second is extremely weak,

on a scale of 10−21 meter (SCHUTZ, 2009; HOBSON et al., 2006). Also, electromagnetic

waves have high interactivity with the cosmos, they can be refracted, absorbed, bent, or

reflected, contrary to it gravitational waves interact very weekly with the matter, bringing

us a sign with a piece of clear information about its source.

As cited, we still do not have enough resources to reproduce gravitational waves as

physical experiments, making us look at the sky, searching for astronomic events capable

of producing them. Often those events are a collision of black holes, collision of neutron

stars, supernova explosion, and gravitational waves from the Big Bang (SCHUTZ, 2009).

Knowing these waves can come from this type of phenomenon, we are able to understand

those phenomena better and hear what electromagnet waves could not tell us until now

(LIGO Laboratory, 2015).

Our work treats specifically gravitational waves at the spiral phase, they come

from binary systems, where two objects spin around the same bodycenter1. We can see in

Figure 2 an illustration of what happens with space-time when a spiral wave is in action.

As will be clear in the next section, the bodies of that system (Figure 2) are a tremendous

amount of speed, and they also have masses equivalent to multiple solar masses. Since

we seek to understand spiral gravitational waves we will present only the calculus of the

waves of this sort of wave.

Figure 2 – The spiral gravitational waves are formed by two black holes. Credit:
(LIGO/T. Pyle, 2016)

1 Center of mass.
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2.1 Gravitational Waves of a Binary System

As said before, phenomena like neutron stars and black holes collision are

astrophysical events able to produce gravitational waves within a significant magnitude

(amplitude bigger than 10−21 meters). Such events were the only source that the LIGO

was able to detect (ABBOTT; AL., 2016).

A binary system is composed of two objects. They can be a combination of black

holes and neutron stars. Those objects meet in the cosmos and stay orbiting a common

barycenter, over time they become closer and closer until they collapse together and

become only one object (RUBBO et al., 2007). It is important to say that these two

objects orbit around each other for an undetermined amount of time. We only have data

to evidence when they are close enough and on a very high velocity2, to the point of

producing gravitational waves with a significant scale.

Figure 3 – Phases of a binary system. Blue continuous line - gravitational wave signal
from the spiral phase Equation 2.1. Red dashed line - ring down stage

Equation 2.8

This phenomenon can be described in three phases (Figure 3). The first one is the

spiral phase, when both objects are orbiting each other at a very high speed, with fractions
2 The GW150914 detection achieved a velocity higher than 0.3 speed of the light (ABBOTT; AL., 2016)



23

of the light speed (ABBOTT; AL., 2016). This phase can be described phenomenologically

by Equation 2.1. Where it seeks to define the gravitational waveform of the simple and

circular binary system (RUBBO et al., 2007).

h(t) = A(t)cosΦ(t) (2.1)

Where h(t) indicates the waveform, A(t) is the amplitude and Φ(t) is the wave

phase. A(t) and Φ(t) can be described as:

A(t) =
2(GM)5/3

c4r

(
π

Pgw(t)

)2/3

(2.2)

G is Newton’s gravitational constant; c is the speed of light; r is the initial

observation distance, in light-year; Φ0 is the initial phase and Pgw is the period in the

instant t. The value of M (Equation 2.3) is called "mass chirp", given this name, because

it can be determined from the evolution of the signal received at the time chirp of the

system’s evolution 3

M ≡ (M1M2)
3/5/(M1 +M2)

1/5 (2.3)

Considering the Equation 2.1, it is possible to see that the fluctuation of the

space-time metric depends only on time. Therefore Φ(t) can be written as the Equation

2.4.

Φ(t) = Φ0 + 2π

∫ t

0

dt′

Pgw(t′)
(2.4)

The period Pgw is easily related to the orbital period Porb:

Porb(t) = 2Pgw(t) (2.5)

Porb(t) = (P
8
3
0 − 8

3
kt)

3
8 (2.6)

3 Exact moment of approximation between the two objects and gradual increase of the frequency of the
received signal.
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k ≡ 96

5
(2π)

8
3

(
GM
c3

) 5
3

(2.7)

Observing the equations above, it is noticed that some input variables are

determinants of the waveform. These are the initial orbital period (P0), mass chirp

(M), the observation distance (r) and the initial phase of the wave (Φ0).

The second phase is the moment of collapse when objects unite and become one.

The last one is the ring-down phase, gravitational waves begin to fatigue until they return

to low amplitude. At this part the waves can be represented phenomenologically as a

damped harmonic oscillator (MARION; THORNTON, 2003), see below:

h(t) = Be
−t
τ sin(ωt+ δ0) +D (2.8)

where B and D are constants, δ0 is an initial phase, and τ is the damping constant.

It can be seen as the red dashed line in Figure 3.

2.2 Gravitational Wave Detection by LIGO

It took 25 years and 2 detectors for the first LIGO detection to occur. As cited

before, LIGO on September 14 of 2015 the LIGO laboratory detected a gravitational wave

produced by the merge of two black holes. The astrophysical objects had respectively

the masses of 36+5
−4M⊙ and 29+4

−4M⊙ before the merge. Within the merge they radiate

the energy of 3+0.5
−0.5M⊙ in the gravitational waveform, ending with a new black hole of

62+4
−4M⊙.

LIGO laboratories are twins, which means that there are two laboratories, one

confirming the information of the other so that there is better reliability of the inferred

information. As the name says, the detectors are interferometers, these interferometers

have the precision capable of measuring 1/1000th part of the nucleus of an atom.
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Figure 4 – Simplified diagram of an Advanced LIGO detector (not to scale). Credit:
(ABBOTT; AL., 2016)

Both of the detectors are located in the United States of America, one is in

Livingston, state of Louisiana, and the other in Hanford, Washington state. The

gravitational waves are measured as the arms length happens to have the orthogonal

difference, see Figure 5. Two arms each operate a modified Michelson interferometer, each

arm is formed by two mirrors acting as test masses, separated by Lx = Ly = L = 4km. A

passing gravitational wave effectively changes the lengths of the arms so that the measured

difference is Equation 2.9, where δLx and δLy are respectively the difference the arms

have in their length when a gravitational wave passes through it, and h is the deformation

amplitude of the gravitational wave projected onto the detector.

∆L = δLx − δLy = h(t)L (2.9)

This differential length variation changes the phase difference between the two light

fields returning to the beam divisor, transmitting an optical signal proportional to the

gravitational wave deformation to the output photodetector. In Figure 5 it is possible to

see that on the image on top the waves cancel themselves signals, but on the image below,

where the red arrow points, when a gravitational wave passes through it one of the arms
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squeeze (δLx) while the other stretch (δLy), this movement causes the light beam that

hits the detector to flicker (h(t)L).

Figure 5 – Illustrating how the twin LIGO observatories work. Credit: (LIGO/T. Pyle,
2016)

Knowing how the detection of gravitational wave signals works, we used in this

dissertation the data made available by LIGO from its research and detections. We also

consider as parameters for approximation metrics of our algorithms the mass values of the

gravitational wave generating objects reported by LIGO.
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3 Neural Networks and the Input-Output Problem

To the better understating of machine learning to create our models, this Chapter

contains a breath introduction to Artificial Neural Networks (ANNs), limited to the ones

used in this dissertation.

3.1 Neural Networks

As said in (HORNIK et al., 1989), neural networks are universal function

approximators, to ensure a satisfactory accuracy we would need the right training and

number of nodes.

The core ground of ANNs are the biological neural networks, formulated in 1943 by

McCulloch and Pitts. ANNs are distributed parallel systems composed of simple processing

units, called neurons or nodes, which compute mathematical functions, normally non-linear

(BISHOP, 1995).

Neurons or nodes are arranged in a spatial arrangement usually composed of one or

more layers and interconnected by a large number of connections. In most models, these

connections are associated with weights, which serve as that magnifier of the importance

of the input signals of the neurons in the network. Each of the units of an ANN receives a

signal. This signal, weighted by the respective unit’s input connections, is treated by a

mathematical function, called the activation function. Finally producing a new output

signal that is propagated through the network (FERREIRA, 2006).

ANNs have the ability to learn through examples, and perform data interpolation.

In the learning process of an ANN, the main task is to determine the strength of the

connections between neurons, and the learning algorithms used to adapt these parameters.

These algorithms have the purpose of performing the adjustment of the weights of the

connections for the best possible generalization of the information contained in the exposed

examples.
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3.2 Neural Networks and Multi-layer Perception

When McCulloch and Pitts first created the concept of ANN, they created a

mathematical model of a Perceptron, which attempts to copy the structure of a neuron

(BISHOP, 1995). A perceptron can receive several entries (x1, ..., xm) which the relevance

of those entries are made by weights (w1, ..., wm). In mathematical form, one can describe

a neuron in a function of its index k (Equation 3.1).

uk =
m∑
j=1

wkjxj (3.1)

The Equation 3.2 includes bias (b) which has the purpose of increasing or decreasing

the value of the download function. That is, the value of the function is negative or positive.

The Equation 3.2 is a linear function, in machine learning, it is called linear regression

when our model responds to a linear function. It can also be written as a one layer neural

network.

h = u+ b = wmxm + b (3.2)

yk = φ(hk) = φ(uk + bk) (3.3)

On Equation 3.3 uk is the linear combination of the input values (x). Already φ is

an activation function and yk is output from the function.

For a better understating of layers, let us observe the Image 6. The input is on the

very left, represented as a closed black circle, the lines connecting the input layer with

forwarding layers have the representation of weights, and each line has a different weight

for each connection between the input layer and the node ahead. The nodes are the bigger

circle on white. Each node has a Equation 3.3 on it making a calculus as passing the result

forward through another liner connector that another node receiving it. Until it arrives at

the output layer.
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Figure 6 – The Architecture of a Multilayer Perceptron Artificial Neural Network.

The type of neural network we represent in Figure 6 is called a Multilayer Perceptron

(MLP). Those networks are fully connected and are directed feed-forward. This means

that all the nodes on the previous layer are connected to the layer forward, which can be

notable in the figure above. And direct feed-forward says that the input layer values are

projected only in their direct sense to the layer of exit, and never the other way around

(HAYKIN, 1999).

The input layers receive the data for the training. The intermediate or hidden

layers catch the entrance value passing from the connections and exit it to the neurons of

the following layer. Finally, the output layer delivers the result of the network (BISHOP,

1995).

3.2.1 Activation Function

The activation function (φ on Equation 3.3) determines the relationship between

the inputs and outputs of a neuron and, in general, introduces a degree of non-linearity in

most networks. Any second-order differentiable function (Class C2) can be an activation

function, however in practice, only a small group of activation functions (FERREIRA,

2006).

In this research we used the Rectified Linear Unit function (ReLU), it is a Class
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C0 function, because its first deviation is not continuous. This function is used mostly

because of its speed up and simplicity of gradient computing (NAIR; HINTON, 2010).

f(x) = max(0, x) (3.4)

Other functions were also used as Hyperbolic Tangent (Equation 3.6), Sine

(Equations 3.5), and the Sigmoid (Equation 3.7) function (PEDREGOSA et al., 2011).

See Figure 7 for the form of each of the functions used in this work.

f(x) = sin(x) (3.5)

f(x) =
ex − e−x

ex + e−x
(3.6)

f(x) =
1

1 + e−x
(3.7)

Figure 7 – Different activation functions used in the research.
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An ANN can have different activation functions for neurons from the same layer

or from different layers, however, the vast majority of ANNs have the same activation

function for all neurons in the same layer.

As said before, with the right training and configuration neural networks can

describe any function with decent accuracy (HORNIK et al., 1989). We then tried to

persuade here the right training and configuration to find our correct algorithm.

3.2.2 Background Propagation

The training process of an ANN is a non-linear minimization problem in which the

weights (or connections) of the network are interactively adjusted to provide a minimum

error between the desired output and the output obtained by the network.

To adjust the weights of the network connections, we use the backpropagation

technique (RUMELHART et al., 1986). This method is used as a parameter for the network

prediction error propagating this error retroactively, so it receives this name (BISHOP,

1995). The function used to make this adjustment is called Optimizer. Among the existing

ones, the Stochastic Gradient Descent (SGD) has evidenced itself as an efficient optimizer

used in many machine learning problems. Furthermore, there’s the Adam optimizer, which

only requires first-order gradients and consumes less computing power (KINGMA; BA,

2017). In the article, we used the Adam optimizer.

3.2.3 Network Architecture

As mentioned earlier, Honik cites that neural networks need the right amount of

nodes and training. With this, we can understand that the network architecture of an

MLP needs definitions in its parameters, which are: input quantity, number of hidden

layers, number of nodes in its hidden layers, and number of output nodes.

These parameters selection is a dependent part of the problem. There are different

approaches to find the right parameters for the ANN, such as pruning algorithm, polynomial

time algorithm, and others. However, in general, these methods are quite complex and

difficult to implement, in addition to the fact that none of these can guarantee the optimal

solution to the problem. For this reason, in most cases, the network architecture is defined
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based on preliminary experiments.

The technique applied to choose the ANN parameters was the Grid Search. This

technique consists of receiving a finite number of possible combinations of parameters and

executing all combinations, the combination of parameters that obtains the best result is

chosen (PEDREGOSA et al., 2011).

For the most successful combination of parameters to be pointed, a result estimator,

and a loss function. This estimator is a metric that indicates how well the model performs.

Our loss function is an adaptation of the Mean Squared Error (MSE) (Equation 3.8) as a

loss function. Instead of using only the MSE for both of the masses, we used the MSE for

both plus MSE for M1 and MSE for M2 (Equation 4.1).

MSE(y, ỹ) =
1

m

m∑
i=1

(yi − ỹi)
2 (3.8)

loss = mse(y, ỹ) +mse(yM1, ỹM1) +mse(yM2, ỹM2) (3.9)

Where in both equations m is the number of network outputs, y is the expected

result and ỹ is the forecast value. Again M1 is the first mass and M2 is the second mass

of the objects that generated the gravitational waves.

3.2.4 Data Normalization

Activation functions that are nonlinear have a different domain. As an example we

have the Sigmoid and Hyperbolic Tangent functions, their interval go between [0, 1] and

[−1, 1] respectively.

Therefore, all data reported to the network must be normalized over the domain of

the activation function used. The data normalization process is performed before training,

in pre-processing. The normalization technique used in this research was the Range of

Linear Transformation, also called Min-max Scaling:

Xn =
X0 −Xmin

Xmax −Xmin

(3.10)
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where Xn is the normalized value, X0 is the original value, Xmin is the minimum value,

and Xmax is the maximum value.

The input and output data normalization are independent. Therefore, we can use

normalization only in data entry, as was done in the experiments presented here.
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4 First Round of Experiments

4.1 Methodology

For the development of this phase of the research, we used a MacBook Pro, with a

Mac OS Catalina operating system, 500Gb SSD, and RAM 16Gb. We used Python 3.6

and the PyTorch library for the ML experiments (PASZKE et al., 2019).

4.1.1 Building the database

In order to infer what the masses of the objects generating the observed waves

would be, we used simulated data to have a significant database for training the network,

as mentioned in the introduction. Thus, the text described in 2.1 was the inspiration for

building the code in Python that would generate the wave simulation. To correctly write

the equation (Code A.1), we use the trapezoid rule (PRESS et al., 2007), where t (time) is

the limit. The value chosen for dt (time interval) is 0.001, the value that decreases the

global error value of the integral, increasing the wave precision degree, however, the wave

generation is within feasible time. Thus, while the value of t does not reach the value of

(P
8
3
0 − 8

3
k)

3
8 the wave was being generated.

For the simulation, considering our objective, we only vary the value of the solar

masses of the objects that would be the generators of the waves, as a consequence only the

chirp mass. Therefore we left all other variables fixed, they would be: distance to the event

is kpc, which was 410,000 (equal to the luminous distance of the first LIGO observation

GW150914), also the initial phase was 0.1 and the initial period was 0 (ABBOTT et al.,

2019; ABBOTT et al., 2021).

The chosen range value for the masses (M1 and M2) was between 20 and 40 solar

masses. These values are justifiable considering the LIGO observation data so far, this

mass range is the majority among the observations, see Figure 8, the red square outlier

the masses of the black holes defections. It is important to point out that the range of

masses limits our algorithm, so if we are observing a gravitational wave with a range that

exceeds what we are training, we will not be able to masterfully infer the data. What is

further in this work will limit the analysis of data collected by LIGO, so not all observed
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by LIGO will be able to pass through the inference of our algorithm.

Figure 8 – LIGO and Virgo have observed the merger of several compact object binaries.
The black holes represent a new population with masses that are larger than
what had been seen previously with X-ray studies alone. This plot shows the
masses of the binary components before the merger, as well as the mass of the
merger remnant. Credit: (LIGO-Virgo/Northwestern Univ./Frank Elavsky,

2020)

As said before, we just vary the chirp mass at the time of wave generation. Code 1

describes how we calculate the chirp mass for all waves, looking at line 6 we check to see if

there is no duplicate chirp mass. The reason for this is that different mass combinations

can lead to the same chirp mass, and in this way we ensure that there are no two identical

waves with different values of M1 and M2, which would confuse the network. Code A.2

also shows how the chirp mass data was generated, ensuring that the mass selection was a

match, where the order doesn’t matter, so if we have M1 = 24 and M2 = 35, we don’t

need to generate another chirp mass with M1 = 35 and M2 = 24, as the order does not

matter.

4.1.1.1 The problem with the wave points

After all, waves have been generated, it was possible to see that the greater the

mass was more points the wave had (Figure 9). Since the time step is fixed, the wave lasts

longer when the mass has increased, which made the waves have more amplitude points.
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Figure 9 – The disparity of points between two wave signals.

To manage this situation, the wave’s histograms (Figure 10) were used as the

network input. That way, all waves are maintained with an equivalent characterization,

and the network can be trained because all the input data have the same size of 300 points.

Figure 10 – Histogram of the waves with a different mass chirp. Now with the same
quantitative points.

4.1.2 Search for the best Neural Network

To analyze the generated data we use Neural Networks, described in Chapter 3,

first we tried to find the best combination of the network architecture (disposed in Table

1) and its learning rate, where we used: 1e10−1, 1e10−2 and 1e10−3. We applied the Grid

Search technique, where a set of hyperparameters is disposed and combined, then we
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try every possible combination to find the one that leads to the best performance of the

algorithm (FEURER; HUTTER, 2019). All the networks used have 300 nodes as input

layer and 2 nodes as output layer to bring us the approximated mass of M1 and M2.

Table 1 – Neural Networks Architecture Configuration

Number of hidden layer 2, 3, 5, 10

Number of node on the hidden layer 50, 100, 150

Activation function ReLU, Sigmoid, Tahn

To train the networks, we also applied stationary configurations for all the networks

searched. We used the Adam optimizer with the default values provided by the PyTorch

library (PASZKE et al., 2019). Our loss function is an adaptation of the mean squared

error (MSE) as a loss function. Instead of using only the MSE for both of the masses, we

used the MSE for both plus MSE for 1 and MSE for M2 (Equation 4.1).

loss = mse(Y,O) +mse(Ym1, Om1) +mse(Ym2, Om2) (4.1)

Where Y is the label (masses) and O is the network output.
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Figure 11 – Distribution of Training data set.

Proceeding with the experiment, we applied a fixed seed of value 2 to the database

split. We separated the database into a training set with 70%, validation and test each

one with 15% of the data. The balance of distribution between the data sets can be seen

in (Figures 11). We first ran the Grid Search with 1, 000 epochs for each combination and

selected the best 10 networks according to the test set score (Table 2).
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4.2 Results

Table 2 – The top 10 Neural Network Performance with 1000 epochs

Hidden Hidden Activation Learning MSE Test σ2 of

Layer Layer Units Function Rate Score Difference

3 150 ReLU 1e10−2 4.437 4.438

2 150 ReLU 1e10−2 4.438 4.438

3 100 ReLU 1e10−2 4.438 4.438

2 100 ReLU 1e10−2 4.441 4.441

5 100 ReLU 1e10−2 4.443 4.443

2 50 ReLU 1e10−2 4.443 4.443

3 50 ReLU 1e10−2 4.443 4.448

5 100 ReLU 1e10−3 4.449 4.449

2 50 ReLU 1e10−3 5.458 5.458

3 150 ReLU 1e10−3 5.515 5.515

After this phase of the experiments, we could notice that some loss graphs were

still decaying (Figure 12 and 13). We stored the networks with their exact states and

weight values. We proceed to more 4000 epochs only applied on the top 10 networks. They

were having a total of 5000 epochs of training for each network.
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Figure 12 – Loss Graph of the 9st neural network on the ranking, in a logarithmic view.
The network has 2 hidden layers with 50 nodes each, using ReLU as the

activation function and 1e10−3 as the learning rate. On blue is the Training
score, and on red is the validation score, showing the balance between both
data and continuous algorithm generalization during the training process.

Figure 13 – Zoom on the Loss Graph of the 9st neural network on the ranking. The last
200 points.

With the new experiment, we also considered the training score to classify the best

performance, which made the table change (Table 3).
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Table 3 – All 8 Neural Network Performance with 5000 epochs

Hidden Hidden Learning MSE Test

Layer Layer Units Rate Score

3 100 1e10−2 4.439

5 100 1e10−2 4.441

5 150 1e10−3 4.443

2 50 1e10−3 4.446

5 100 1e10−3 4.455

3 50 1e10−2 4.456

2 50 1e10−2 4.457

2 150 1e10−2 4.463

3 150 1e10−2 4.465

2 100 1e10−2 4.499

We also noticed that all the scores are under 5 now. The distribution of the real

and predicted values can be seen in Figure 14, where one can visualize a flatness of the

masses values through the prediction process. Also notable is that our mean floats around

zero. Therefore, we had extra work to build this Table 3, the networks that were on top of

their performance did not have an improvement.

Figure 14 – Histogram of the difference between target and prediction using the best
found neural network. On the left (blue color) we have the first mass (M1)

difference and on the right (red color) we have the second mass (M2)

The best Neural Network we found has 3 hidden layer with 100 units on each layer,

uses a learning rate of 10e−2 and got a Mean Squared Error on its test set of 4.439, which
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leads to no improvement over the MSE metric score.

4.2.1 Test with LIGO Data

The final goal of this part of the experiment was to test the best neural network on

LIGO’s data. For that, we used the help of the PyCBC library (Biwer et al., 2019), where

we could get easy access to LIGO data and make some transformations over it.

We used 6 different waves and the range was inside our range from 20M⊙ to 40M⊙,

their plot can be seen in Figure 15. On those waves, we applied a low pass and high pass

filter, with the value of 35− 350Hz bandpass filter, for each of the waves. This filter is

justified by the (ABBOTT; AL., 2016) where the same filter is applied to the data.

Figure 15 – LIGO waves used in the analysis from the PyCBC library.

As we did with our database we transform the waves into their histograms with

300 bins to make it inside our neural network. The results of it can be found in Table 4
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and the distribution for the error can be found in Figure 16. A constant outlier is found

on the tests with the LIGO data, this outlier goes above our standard deviation found on

the first our test data. The mean of the error lies at −11.58, the standard deviation is

13.99, and the mean squared error is 329.55. Considering that our range of data is 20 we

could get an error with 67% of imprecision.

Table 4 – Results with LIGO Data - Round 1

Waves M1 M2

LIGO Output Difference Diff. % LIGO Output Difference Diff. %

GW150914 30.60 27.60 3.00 10 % 35.60 24.30 11.30 32 %

GW170104 20.00 49.20 -29.20 146 % 30.80 57.80 -27.00 88 %

GW170809 23.80 50.80 -27.00 113 % 35.00 60.00 -25.00 71 %

GW170814 25.20 47.00 -21.80 87 % 30.60 54.40 -23.80 78 %

GW170818 26.70 44.60 -17.90 67 % 35.40 50.80 -15.40 44 %

GW170823 29.00 35.50 -6.50 22 % 39.50 33.30 6.20 16 %

Figure 16 – Histogram of the difference between target and prediction using the best
found neural network. On the left (blue color) we have the first mass (M1)

difference and on the right (red color) we have the second mass (M2)

That was when we could not find a good fit for this experiment around the problem

we wanted to solve. Furthermore, it is possible to say that our model is very good for our

modeling data. But, it does not take what is needed for the real world problem.
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5 Second Round of Experiments

This round was made using the Google Colaboratory platform (GOOGLE. . . , ).

We still used the same Python libraries as the First Round 4.

5.1 Methodology

After the experiments did not have a good performance on the LIGO real data, we

went to give a deeper look into the data we have modeled. We could notice a distortion

(Figure 17) on our waves, which could lead to data that did not reflect precisely the event

of gravitational waves that we were trying to represent. When these references were used,

there was a distortion of the information that was significant when we wanted to obtain

more accurate information from it.

Figure 17 – Zoom on a wave with M1 and M2 mass equal to 20 M⊙
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Back to our problem, we tried on curve fit techniques to find new pre-set values for

the equations. Unfortunately, we had another round of unsuccessful experiments. At the

time it was more important to keep the d ata as close as possible to the representation of

the gravitational waves event, therefore instant of modeling our won data we used a data

set already with its won equations using the PyCBC library (Biwer et al., 2019).

For this data set, we simulated another 80,200 waves, with the same mass range

between 20M⊙ and 40M⊙. The simulated waveform representation can be seen in Figure

18, and the code is on A.3.

Figure 18 – Simulated waveform from PyCBC library.

It is possible to see in Figures 18 and 19 that there are two line waves

(cross-polarization and plus polarization) four our experiments we decided to use

cross-polarization, mathematically there would be no difference in which one to select.

Figure 19 – Waveform simulated from PyCBC library used as input to the Neural
Network. It has exactly 409 points. Starts −0.1 second before the objects

merge and end at the exact point of the merge.
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We ran the experiments using the same combinations of hyperparameters and

Neural Network as in Chapter (4), the only difference is that rather than use 300 histogram

point for our Neural Network input we used 409 wave amplitude points (Figure 19).

5.2 Results

We ran a preliminary experiment 1, 000 epochs twice using the Grid Search technique

to select the parameters. Considering the average value of the mean squared error for the

validation data for each neural network, we could find that the best performance was the

network with the Sin activation function, which had 2 hidden layers, 200 hidden layer

unit on each hidden layer and a learning rate of 10e−2 (Table 5), with the average score

of 4.337. In Table 5, there are two neural networks results, the second one was noticed

because had the same configuration as the best one, except for the learning rate, which

was 10 times smaller, this tells us that the neural network takes more time to archive a

minimum, so we reinforce its training to know if it could achieve an even better result

than the best performance neural network until now.

Table 5 – Second Round Experiment - Preliminary Result

Hidden Hidden Learning MSE Score

Layer Layer Units Function Training Validation Test

2 200 1e10−2 4.327 4.337 4.416

2 200 1e10−3 5.291 5.339 5.424

Thereafter using the early stop technique we ran another round of experiments

with both neural networks. Resulting in the neural network with 10−3 learning rate having

the best result, considering the validation data rate, which attained 17, 798 epochs and

1.595 on the validation set, on the training set 1.525 and 1.589 with the test set. The

results of both neural networks can be seen in Table 6
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Table 6 – Second Round Experiment - Early Stop

Hidden Hidden Learning Epochs MSE Score

Layer Layer Units Function Training Validation Test

2 200 1e10−2 2,815 3.818 3.826 3.902

2 200 1e10−3 17,798 1.525 1.595 1.589

To see the closeness of our model with the test data we plot the histogram of the

error for it. The histogram shows the error distribution of (Test data - Foretasted Test

Data) (Figure 20), for both masses.

Figure 20 – Test data error histogram for Second Round. The first mass is on the left and
the second mass is on the right.

5.2.1 Test with LIGO Data

Once more for our final test of the network, we used the LIGO real data to analyze

the neural network. The results can be found in Table 7.

The Figure 21 below shows the histogram of the difference between LIGO masses

results and our model output masses. Together both masses have their error with a mean

of 14.1, the variance was 147.71, the standard deviation on 12.15 and the MSE was 346.52.

Considering our range of 20, between 20M⊙ and 40M⊙ the percentage difference is 53%.
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Table 7 – Results with LIGO Data - Round 2

Waves M1 M2

LIGO Output Difference Diff. % LIGO Output Difference Diff. %

GW150914 30.60 12.50 18.10 59% 35.60 10.90 24.70 69%

GW170104 20.00 11.20 8.80 44% 30.80 10.70 20.10 65%

GW170809 23.80 19.10 4.70 20% 35.00 19.90 15.10 43%

GW170814 25.20 11.80 13.40 53% 30.60 13.60 17.00 56%

GW170818 26.70 13.50 13.20 49% 35.40 13.50 21.90 62%

GW170823 29.00 26.90 2.10 7% 39.50 31.50 8.00 20%

Figure 21 – LIGO Data test results histograms. On the left (blue) is the M1, and on the
right (red) is the M2. There is a normal wave fitted to the data, it is possible
to see it does not lay on the data well. For the M1 the mean is 10.80 and the

standard derivation 10.24. For M2 the mean is 17.39 and the standard
derivation 13.
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6 Third Round of Experiments

6.1 Methodology

After our neural network does not be able to perform a good regression value for

real data we went for a third round, now in insert noise on the simulated waves following

the steps below:

1. Collect the LIGO that was used for comparison: GW150914, GW151012, GW170104,

GW170729, GW170809, GW170814, GW170818, and GW170823.

2. Find the equivalent waves, with the same M1 and M2 masses on the modeled

database.

3. Subtract the modeled wave data from the LIGO wave, for each of the ten waves.

Resulting in noise for each of the waves.

4. Summarize the errors found and divide by ten, getting an average error for all the

waves.

5. Apply the same average error found on each of the 80, 200 modeled waves we had.
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Figure 22 – Test data error histogram for Second Round. First mass on the left and the
second mass on the right.

The Figure 22 illustrates our process. On the first wave, on red, we have the LIGO

detection of GW150914, after the LIGO filter and signal process are applied (ABBOTT;

AL., 2016). The second wave, in purple, is the simulated wave, generated using PyCBC

with M1 equaling 30.6 and M2 equals 35.6. On the third graph is the subtraction of the

detection wave per the simulated wave, leaving behind the noise.

6.2 Results

With this new noisy data, we ran the same experiments as Phase 2, a Grid Search

within 6 times. For the preliminary, we had the neural network with 5 hidden layers, 300

hidden layer units, Sin as activation function and we used a learning rate of 1−2. In Table

8, we can see the networks with the smallest rates for the preliminary experiments.
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Table 8 – Third Round Experiment - Preliminary

Hidden Hidden Learning MSE Score

Layer Layer Units Function Training Validation Test

5 300 1e10−2 1.962 1.235 1.944

5 200 1e10−2 2.922 2.74 2.913

Afterward, we ran an early stop with the network of 300 hidden layers units. It

took 1260 epochs (Table 9). The performance of the network over the epochs is placed in

Figure 23, where we can notice a wide drop a little before the 100 epochs. The behavior

on the last 260 epochs can be seen closely in Figure 24, a early stop technique prevented

to the increase of error on the algorithm. The results can be found in Table 9.

Figure 23 – Test data error histogram for Second Round. The first mass is on the left and
the second mass is on the right.

In Figure 24 the curve is oscillating in a way that the general error is meaningless for

us. We also tried to variate the learning rate to 10−1 but the results were not newsworthy,

even with a smaller learning rate and more time to archive a better result the learning

rate of 10−2 had a better result of all networks.
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Figure 24 – Test data error histogram for Second Round. The first mass is on the left and
the second mass is on the right.

In the Table below we can see the results of the metrics. Also, the Figure 25shows

us the error distribution for the test data.

Table 9 – Third Round Experiment - Early Stop

MSE Score

Training Validation Test

1.096 1.177 1.190

Figure 25 – Test data error histogram for Second Round. The first mass is on the left and
the second mass is on the right.
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6.2.1 Test with LIGO Data

Finally, we used the network on LIGO real data to analyze the neural network.

The results can be found in Table 7.

Table 10 – Results with LIGO Data - Phase 3

Waves M1 M2

LIGO Output Difference Diff. % LIGO Output Difference Diff. %

GW150914 30.60 23.10 7.50 25 % 35.60 34.40 1.20 3 %

GW170104 20.00 25.00 -5.00 25 % 30.80 31.40 -0.60 2 %

GW170809 23.80 21.80 2.00 8 % 35.00 28.50 6.50 19 %

GW170814 25.20 24.20 1.00 4 % 30.60 31.20 -0.60 2 %

GW170818 26.70 24.80 1.90 7 % 35.40 31.70 3.70 10 %

GW170823 29.00 20.60 8.40 29 % 39.50 26.60 12.90 33 %

The plot below (Figure 26) shows the error distribution. For the mean now we have

−3.24, a variance of 21.55, a standard deviation of 4.64, and an MSE of 32.03. Considering

the percentage it was 12% error.

Figure 26 – LIGO Data test results histograms. On the left (blue) is the M1, and on the
right (red) is the M2. There is a normal wave fitted to the data, it is possible
to see it does not lay on the data well. For the M1 the mean is −2.62 and the

standard derivation 4.44. For M2 the mean is −3.85 and the standard
derivation 4.75.

With this round, we end our experiments for this work.
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7 Result and Discussion

With the algorithm developed over this work, we were able to extract information

about the fusion of astrophysical objects, through their gravitational wave signal. We can

consider our results fast, cheap, and computationally low range.

We treat this work as cheap because it was made using personal computers. We

also can consider it fast because of the training time of the neural networks used during

the process and the inference time after we have the neural network weighted. The neural

networks performed well and the training took some hours.

As a result, we developed it in three phases. In Round 1 (Chapter 4) we build our

own database, generating the waves ourselves, using the technique described in (RUBBO

et al., 2007). The network input was the wave’s histograms. We archived an MSE of 4.44

for our simulated database, but for the LIGO data, we did not archive a satisfactory result,

with an MSE of 419.40.

Since the need for improvement for LIGO data was clear, we insist on another

round of experiments. Due to a numeric distortion on the waves of our generated database,

we decide to persuade another database, for that we used the PyCBC library, where we

could generate our database with only the input of the masses. We also insert Sin as the

activation function, and we found it was the best performance at the moment, with an

MSE for the test data on 3.902. Round 2 (Chapter 5) shows us that we still need to work

on another database for the LIGO data, our mean error is 14.1 and we could get a 53%

error still.

Since we saw some progress in Round 2, we went for our final round of experiments

(Chapter 6). Now we insert some noise on our waves instant of input the simulated signal

itself. With that, we found a more promising result for our test data and the LIGO data.

For the test data, we found an MSE of 1.19, and for the LIGO data, we saw a decrease in

the standard deviation dropping to 4.64. Which lead us to an error of 12%.

Therefore, the error reached in the third experimental round still is relatively high,

where it is around 12%. However, the masses estimates are a very good first approximation,

given the computational infrastructure needed and the avoid knowledge about sophisticated

numerical relativity methods employed as the true procedure to execute inference of these

masses. In this way, the simplicity of the proposed methodology is the advantage to obtain



55

an initial astrophysical body’s mass estimation.

Finally, we can affirm, we apply a methodology that is well know on the computer

science field, but not widespread on the physics, more specifically, gravitational waves

field.Hence we have brought innovation in the field of astroinformatics.

7.1 Future work

This dissertation tries to find a valuable algorithm capable of characterizing a very

complex natural phenomenon. Our preliminary results are satisfactory because they show

the possibility of doing it with limited resources. Notwithstanding we went for continuous

improvement of results in this work, there is space for more development. if continue

from here it could be done with a superior reflection of the noises being inserted into the

data. Also better processing of LIGO data and its filters. A study on the automation of

searching for the best neural network architecture.

7.2 Published work

During Round 1 (Chapter 4) of our experiments, we published some results on XV

Congresso Brasileiro de Inteligência Computacional (CBIC 2021), under the title Mass

Determination of Black Holes from Gravitational Wave Data Using Neural Networks, in

the section of Applications of Computational Intelligence in Physics.

The results reached in the second and third experimental rounds have great potential

to be published. Nowadays, they are being formatted for a future paper publication.



56

Bibliography

ABBOTT, B.; ABBOTT, R.; ABBOTT, T.; ABRAHAM, S.; ACERNESE, F.; ACKLEY,
K.; ADAMS, C.; ADHIKARI, R.; ADYA, V.; AFFELDT, C.; AL. et. Gwtc-1: A
gravitational-wave transient catalog of compact binary mergers observed by ligo and
virgo during the first and second observing runs. Physical Review X, American
Physical Society (APS), v. 9, n. 3, Sep 2019. ISSN 2160-3308. Disponível em: <http:
//dx.doi.org/10.1103/PhysRevX.9.031040>.

ABBOTT, B. P.; AL. et. Observation of gravitational waves from a binary black hole
merger. Phys. Rev. Lett., American Physical Society, v. 116, p. 061102, Feb 2016.
Disponível em: <https://link.aps.org/doi/10.1103/PhysRevLett.116.061102>.

ABBOTT, R.; ABBOTT, T.; ABRAHAM, S.; ACERNESE, F.; ACKLEY, K.; ADAMS,
A.; ADAMS, C.; ADHIKARI, R.; ADYA, V.; AFFELDT, C.; AL. et. Gwtc-2: Compact
binary coalescences observed by ligo and virgo during the first half of the third observing
run. Physical Review X, American Physical Society (APS), v. 11, n. 2, Jun 2021. ISSN
2160-3308. Disponível em: <http://dx.doi.org/10.1103/PhysRevX.11.021053>.

BEZGINOV, N.; VALDEZ, T.; HORBATSCH, M.; MARSMAN, A.; VUTHA, A. C.;
HESSELS, E. A. A measurement of the atomic hydrogen lamb shift and the proton
charge radius. Science, v. 365, n. 6457, p. 1007–1012, 2019. Disponível em: <https:
//www.science.org/doi/abs/10.1126/science.aau7807>.

BISHOP, C. M. Neural Networks for Pattern Recognition. New York, NY, USA:
Oxford University Press, Inc., 1995. ISBN 0198538642.

Biwer, C. M.; Capano, C. D.; De, S.; Cabero, M.; Brown, D. A.; Nitz, A. H.; Raymond, V.
PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary
Coalescence Signal. , v. 131, n. 996, p. 024503, fev. 2019.

EINSTEIN, A. Näherungsweise integration der feldgleichungen der gravitation. Königlich
Preußische Akademie der Wissenschaften, 1916.

FERREIRA, T. A. E. Uma nova metodologia híbrida inteligente para a previsão
de séries temporais. Tese (Doutorado) — Universidade Federal de Pernambuco, 2006.
Disponível em: <https://repositorio.ufpe.br/handle/123456789/2640>.

FEURER, M.; HUTTER, F. Hyperparameter Optimization. Cham: Springer
International Publishing, 2019. 3–33 p. ISBN 978-3-030-05318-5. Disponível em: <https:
//doi.org/10.1007/978-3-030-05318-5_1>.

GEORGE, E. A. H. D. Deep learning for real-time gravitational wave detection and
parameter estimation: Results with advanced ligo data. Physics Letters B, 778 (2018)
64-70, 2017.

GOOGLE Colaboratory FAQ. <https://research.google.com/colaboratory/faq.html>.
Accessed: 2022-08-02.

HAEGEL, L.; HUSA, S. Predicting the properties of black-hole merger remnants with
deep neural networks. Classical and Quantum Gravity, IOP Publishing, v. 37, n. 13, p.
135005, jun 2020. Disponível em: <https://doi.org/10.1088\%2F1361-6382\%2Fab905c>.

http://dx.doi.org/10.1103/PhysRevX.9.031040
http://dx.doi.org/10.1103/PhysRevX.9.031040
https://link.aps.org/doi/10.1103/PhysRevLett.1 16.061102
http://dx.doi.org/10.1103/PhysRevX.11.021053
https://www.science.org/doi/abs/10.1126/science.aau7807
https://www.science.org/doi/abs/10.1126/science.aau7807
https://repositorio.ufpe.br/handle/123456789/2640
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://research.google.com/colaboratory/faq.html
https://doi.org/10.1088\%2F1361-6382\%2Fab905c


57

HAYKIN, S. Neural Networks and Learning Machines. 3. ed. [S.l.]: Pearson
Education, Inc., 1999. ISBN 978-0-13-147139-9.

HOBSON, M. P.; EFSTATHIOU, G. P.; LASENBY, A. N. General Relativity An
Introduction for Physicists. 1. ed. [S.l.]: Cambridge University Press, 2006. ISBN
978-0-511-13795-2.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are
universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, 1989. ISSN 0893-6080.
Disponível em: <https://www.sciencedirect.com/science/article/pii/0893608089900208>.

Hulse, R. A.; Taylor, J. H. Discovery of a pulsar in a binary system. apjl, v. 195, p.
L51–L53, jan. 1975.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2017.

LIGO Laboratory. Why Detect Them? 2015. Disponível em: <https://www.ligo.
caltech.edu>.

LIGO-Virgo/Northwestern Univ./Frank Elavsky. Masses of LIGO/Virgo detections.
2020. [Online; accessed August 7, 2022]. Disponível em: <https://www.ligo.org/detections/
images/MassPlot_graveyard_190814.png>.

LIGO/T. Pyle. Spiral Dance of Black Holes. 2016. [Online; accessed July 08, 2022].
Disponível em: <https://www.ligo.caltech.edu/image/ligo20160615f>.

MARION, J. B.; THORNTON, S. T. Classical dynamics of particles and systems.
5. ed. [S.l.]: Cengage Learning, 2003. ISBN 978-0534408961.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
In: ICML 2010. [S.l.: s.n.], 2010. p. 807–814.

Nobel Prize in Physics. The Nobel Prize in Physics 1993. 2019. Disponível em:
<https://www.nobelprize.org/prizes/physics/1993/press-release/>.

PASZKE, A.; GROSS, S.; MASSA, F.; LERER, A.; BRADBURY, J.; CHANAN,
G.; KILLEEN, T.; LIN, Z.; GIMELSHEIN, N.; ANTIGA, L.; DESMAISON, A.;
KOPF, A.; YANG, E.; DEVITO, Z.; RAISON, M.; TEJANI, A.; CHILAMKURTHY,
S.; STEINER, B.; FANG, L.; BAI, J.; CHINTALA, S. Pytorch: An imperative
style, high-performance deep learning library. In: WALLACH, H.; LAROCHELLE,
H.; BEYGELZIMER, A.; ALCHé-BUC, F. d'; FOX, E.; GARNETT, R. (Ed.).
Advances in Neural Information Processing Systems 32. [S.l.]: Curran
Associates, Inc., 2019. p. 8024–8035. Http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learnin g-library.pdf.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION,
B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG,
V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT,
M.; DUCHESNAY, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.ligo.caltech.edu
https://www.ligo.caltech.edu
https://www.ligo.org/detections/images/MassPlot_graveyard_190814.png
https://www.ligo.org/detections/images/MassPlot_graveyard_190814.png
https://www.ligo.caltech.edu/image/ligo20160615f
https://www.nobelprize.org/prizes/physics/1993/press-release/


58

PRESS, W. H.; TEUKOLSKY, S. A.; VETTERLING, W. T.; FLANNERY,
B. P. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
3. ed. Cambridge University Press, 2007. ISBN 0521880688. Disponível em:
<http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/
0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1>.

RUBBO, L. J.; LARSON, S. L.; LARSON, M. B.; INGRAM, D. R. Hands-on gravitational
wave astronomy: Extracting astrophysical information from simulated signals. Utah State
University DigitalCommons@USUs, All Physics Faculty Publications, ago. 2007.

RUMELHART, D. E.; MCCLELLAND, J. L.; PDP Research Group (Ed.). Parallel
Distributed Processing. Volume 1: Foundations. Cambridge, MA: MIT Press, 1986.

SANTOS, G. R.; FIGUEIREDO, M. P.; SANTOS, A. d. P.; PROTOPAPAS, P.;
FERREIRA, T. A. E. Gravitational Wave Detection and Information Extraction
via Neural Networks. arXiv, 2020. Disponível em: <https://arxiv.org/abs/2003.09995>.

SCHUTZ, B. F. A First Course in General Relativity. 2. ed. [S.l.]: Cambridge
University Press, 2009. ISBN 978-0-511-53995-4.

T. Pyle/Caltech/MIT/LIGO Lab. Massive Bodies Warp Space-Time. 2016.
[Online; accessed July 08, 2022]. Disponível em: <https://www.ligo.caltech.edu/image/
ligo20160211e>.

THORNE, K. The Science of Interstellar. 1. ed. W. W. Norton Company, 2014. ISBN
9780393351378; 0393351378; 9780393351385; 0393351386. Disponível em: <libgen.li/file.
php?md5=cf3f0b879bca735fcb3ba8533d854ffc>.

WHEELER., C. W. M. . K. S. T. . J. A. Gravitation. 1. ed. [S.l.]: New York, NY :
Freeman, 2008. ISBN 0716703343; 9780716703341; 0716703440; 9780716703440.

http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1
http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1
https://arxiv.org/abs/2003.09995
https://www.ligo.caltech.edu/image/ligo20160211e
https://www.ligo.caltech.edu/image/ligo20160211e
libgen.li/file.php?md5=cf3f0b879bca735fcb3ba8533d854ffc
libgen.li/file.php?md5=cf3f0b879bca735fcb3ba8533d854ffc


59

APPENDIX



60

APPENDIX A – Code

A.1 Wave generator

1 de f wave_generator ( chirp_mass , luminos i ty =1.0) :

2

3 c = 3 .0 e8 # light speed

4 G = 6.674 e−11 # Newton's gravitational constant

5 k = (96/5) ∗(2∗math . p i ) ∗∗(8/3) ∗(G∗chirp_mass/c ∗∗3) ∗∗(5/3)

6 r = luminos i ty

7 x = 2 .0∗ (G∗chirp_mass ) ∗∗(5/3) /( r ∗c ∗∗4)

8 P0 = 0 .5 # initial orbital period

9 f i = 0 .0 # initial wave's phase

10 dt = 0.001 # time frame interval

11 t = 0 .0

12 h = 0 .0

13 s t r a i n = [ ]

14

15 whi le t < (3∗P0∗∗(8/3) /(8∗k ) ) :

16 s t r a i n . append (h/1 e23 )

17 pgw = 0 .5∗ (P0^(8/3) −(8/3)∗k∗ t ) ^(3/8)

18 amp = x∗(math . p i /pgw) ^(2/3)

19 phi = f i − (4 .0/5 .0 ) ∗math . p i ∗ (3 . 0∗P0^(8/3) −8.0∗k∗ t ) /

20 ( k∗(P0^(3/8) −(8/3)∗k∗ t ) ^(3/8) )

21 h = h + amp ∗ math . cos ( phi )

22 t = t + dt

23 re turn s t r a i n �
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A.2 Generate chirp mass

1 sm = 1.989 e30 # Sun mass

2

3 f o r m1 in range ( 20 , 4 0 , 0 . 1 ) :

4 f o r m2 in range (m1, 4 0 , 0 . 1 ) :

5 chirp_mass = calculate_chirp_mass (m1∗sm , m2∗sm)

6 i f chirp_mass not in chirp_mass_l ist :

7 chirp_mass_l ist . append ( chirp_mass ) �
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A.3 PyCBC wave generator

1 import numpy as np

2 import pandas as pd

3

4 min_mass , max_mass = 20 .0 , 40 .0

5

6 va l u e s_ l i s t = [ ]

7 t ime s_ l i s t = [ ]

8 mass1_l i st = [ ]

9 mass2_l i st = [ ]

10

11 f o r m1 in np . arange (min_mass , max_mass , 0 . 05 ) :

12 f o r m2 in np . arange (m1, max_mass , 0 . 05 ) :

13 m1 = round (m1, 2)

14 m2 = round (m2, 2)

15

16 hp , hc = get_td_waveform ( approximant="SEOBNRv4_opt" , mass1=m1,

17 mass2=m2, delta_t =1.0/4096 , f_lower=30)

18

19 t imes = np . array (hp . sample_times )

20 wanted_index = np . where ( ( times >=−0.1) & ( times <=0))

21

22 t imes = times [ wanted_index ]

23 va lue s = np . array (hp [ wanted_index ] )

24

25 m1_arr , m2_arr = np . empty ( t imes . s i z e ) , np . empty ( t imes . s i z e )

26 m1_arr . f i l l (m1)

27 m2_arr . f i l l (m2) �
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