
GABRIEL FINCH

LiVES: LiVES is a Video Editing System

RECIFE-PE – JULHO/2013.

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA APLICADA

LiVES: LiVES is a Video Editing System

Dissertação apresentada ao Programa de
Pós-Graduação em Informática Aplicada
como exigência parcial à obtenção do
título de Mestre.

Área de Concentração: Engenharia de
Software

Orientador: Prof. Dr. Giordano Ribeiro Eulalio Cabral

RECIFE-PE – JULHO/2013.

 Ficha Catalográfica

F492L Finch, Gabriel
 LiVES: LiVES is a video editing system / Gabriel Finch.
 -- Recife, 2013.
 132 f.

 Orientador (a): Giordano Cabral.
 Dissertação (Mestrado em Informática Aplicada) –
 Universidade Federal Rural de Pernambuco, Departamento de
 Estatísticas e Informática, Recife, 2013.
 Inclui referências e apêndice.

 1. Software - Desenvolvimento 2. Prototipagem
 3. Multimídia 4. Usuários de computador 5. Vídeo digital
 I. Cabral, Giordano, orientador II. Título

 CDD 005.1

http://autoridades.bn.br/scripts/odwp032k.dll?t=bs&pr=assuntos_pr&db=assuntos&use=sh&disp=list&sort=off&ss=NEW&arg=software%7C-%7Cdesenvolvimento

ACKNOWLEDGEMENTS

The author would like to thank:

 The staff and students at UFRPE.

 All the LiVES users and contributors.

My family.

and the following, who have helped along the way:

Niels Elburg, Denis "Jaromil" Rojo, Tom Schouten, Andraz Tori,

Silvano "Kysucix" Galliani, Kentaro Fukuchi, Dr. Jun Iio, Oyvind Kolas,

Carlo Prelz, Yves Degoyon, Lady Xname, timesup.org, LinuxFund, VJ Pixel,

estudiolivre, mediasana, Felipe Machado, elphel.com.

RESUMO

Relativamente pouca pesquisa científica tem sido executado até à data atinente aos requisitos
dos usuários de aplicativos de processamento de vídeo. Nesta dissertação, apresentamos um
novo termo "Experimental VJ", e examinamos os requisitos de software para essa classe de
usuário, derivados de uma variedade de fontes. Por meios desses requisitos, definimos os
atributos que seria necessário um programa criado para satisfazer essas demandas possuir.
Nós nos concentramos em uma ferramenta em particular - ou seja, LiVES - e mostramos
como ele foi projetado e desenvolvido para atender a essas necessidades. Detalhes do
desenvolvimento do LiVES e de sua arquitetura estão incluídos. Após isso, nós fornecemos
algumas validações que o aplicativo LiVES está conseguindo em seus objetivos.

Palavras-chaves: Requisitos de usuários. Multimédia. Vídeo. Desenvolvimento de software.
 Prototipagem.

ABSTRACT

Relatively little scientific research has been performed to date regarding the requirements of
users of video processing applications. In this dissertation, we introduce a new term
“Experimental VJ”, and examine the software requirements for this class of user, deriving this
from a variety of sources. From these requirements we infer the set of features which a
program designed to satisfy them should possess. We focus on one tool in particular – namely,
LiVES - and show how it has been designed and developed to fulfill these needs. Details of
the development of LiVES and its architecture are included. Following this, we provide some
validation that the LiVES application is succeeding in its aims.

Keywords: User requirements. Multimedia. Video. Software development. Prototyping.

List of Figures
Figure 1 - An example of video mapping projection..22
Figure 2 - Arkaos GrandVJ...23
Figure 3 - Resolume..24
Figure 4 - Veejay...25
Figure 5 - Adobe Premiere..26
Figure 6 - Final Cut Pro..27
Figure 7 - Kdenlive...28
Figure 8 - OpenShot..29
Figure 9 - Lightworks...29
Figure 10 - Blender...30
Figure 11 - The Video Sequence Editor in Blender..31
Figure 12 - An example of a patch in Pure Data...33
Figure 13 - A patch in Isadora...34
Figure 14 - The video library API in Processing...35
Figure 15 - Example of the interface of ViMus..38
Figure 16 - Methodology – Flowchart..55
Figure 17 - Functional overview of the LiVES application..66
Figure 18 - The clip editor interface in LiVES...68
Figure 19 - The multitrack editor in LiVES..70
Figure 20 - The multitrack audio mixer in LiVES..71
Figure 21 - The event list viewer in LiVES..72
Figure 22 - The real-time effect mapper in LiVES...73
Figure 23 - The Data Connector in LiVES...74
Figure 24 - LiVES setup for an online video editing system..86
Figure 25 - LiVES online demo - information page...87
Figure 26 - LiVES online demo - clip edit mode..87
Figure 27 - LiVES online demo - streaming preview player..88
Figure 28 - LiVES online demo - multitrack mode..88
Figure 29 - Popularity of various features in LiVES..92
Figure 30 - User Friendliness rating for LiVES..101
Figure 31 - Stability rating for LiVES..101
Figure 32 - Feature Completeness rating for LiVES..102
Figure 33 - Performance rating for LiVES...102
Figure 34 - Documentation / Tutorials rating for LiVES..103
Figure 35 - Videojack routing video frames from one copy of LiVES to another..................105
Figure 36 - Humourous flyer for a development conference / presentation, one of the events
where the author and others worked on the LiVidO spec...106
Figure 37 - Worldwide visitors to the LiVES website for April 2013....................................111
Figure 38 - Global distribution of visits to the LiVES website for the month of April 2013. 112
Figure 39 - LiVES running on the Raspberry Pi...115

List of Tables
Table 1 - Suitability of various development methods..40
Table 2 - Comparison of technical features in various video applications...............................43
Table 3 - Comparison of Proprietary and Open Source development models..........................52
Table 4 - Language breakdown for the LiVES application...79
Table 5 - List of features considered important in a video application, in order of popularity.91
Table 6 - Cross reference of LiVES features..99
Table 7 - Key for Table 6..100

Table of Contents
 1 INTRODUCTION...10
 2 THE PROBLEM AND REQUIREMENTS FOR ITS SOLUTION.......................14

2.1 ADVANTAGES...14
2.2 REQUIREMENTS...16
3 AN OVERVIEW OF VIDEO PROCESSING APPLICATIONS.....................18
3.1 VJ APPLICATIONS...18
3.1.1 Example applications...22
3.2 VIDEO EDITING APPLICATIONS..25
3.2.1 Example applications...26
3.3 VIDEO PROGRAMMING ENVIRONMENTS..31
3.3.1 Example applications...32
3.4 ACADEMIC PROJECTS...37

 4 METHODOLOGY..40
4.1 ANALYSIS OF VIDEO APPLICATIONS...41
4.2 CONFERENCES AND SEMINARS...41
4.3 CROSS-REFERENCE OF APPLICATIONS..42
4.4 METHODOLOGY - FLOWCHART...45

 5 THE CONCEPT OF LIVES..56
5.1 FUNCTIONAL REQUIREMENTS...56
5.2 NON-TECHNICAL REQUIREMENTS..59
5.3 CHALLENGES..60

 6 LIVES..63
6.1 THE HISTORY OF LIVES..63
6.2 THE PHILOSOPHY OF LiVES...63
6.3 THE LIVES COMMUNITY..64
6.4 EQUIVALENT COMMERCIAL DEVELOPMENT...65
6.5 THE ARCHITECTURE OF LIVES...65
6.5.1 Functional overview...66
6.5.2 Technical overview..74
6.5.3 Plugins..76
6.5.4 Optimisations, concurrency...80
6.5.5 Language breakdown...80
6.6 UNIQUE FEATURES..81
7 RESULTS AND VALIDATION...90
7.1 VALIDATION OF TECHNICAL FEATURES..90
7.1.1 Qualitative responses..96
7.2 VALIDATION OF NON-SPECIFIC REQUIREMENTS....................................100
7.3 RESULTS OF THE THIRD SURVEY...103
7.4 RESULTS FROM DISCUSSIONS WITH SPECIALISTS.................................104
7.5 RESULTS OF LIVES DEVELOPMENT..107
7.5.1 Estimates of the number of users..107
7.5.2 Website visitors...109
7.5.3 The lives-users mailing list...113
7.5.4 Reviews in the media..113
7.5.5 Awards...114
7.5.6 Uses of LiVES..115
7.5.7 Reactions from users..116
8. CONCLUSIONS...118
8.1 FUTURE WORK..118

 REFERENCES..120
 APPENDIX A...122

 APPENDIX B...124
 APPENDIX C...128

10

1 INTRODUCTION

Computer video applications are an increasingly important area of modern technology.

Sherman (2008) wrote:

As video technology spun off from television, the mission was clearly one of complete
decentralisation. Forty years later, video technology is everywhere. Video is now a
medium unto itself, a completely decentralised digital, electronic audio-visual
technology of tremendous utility and power. Video gear is portable, increasingly
impressive in its performance, and it still packs the wallop of instant replay. As
Marshall McLuhan said, the instant replay was the greatest invention of the twentieth
century.

Video in 2008 is not the exclusive medium of technicians or specialists or journalists
or artists – it is the people’s medium. The potential of video as a decentralised
communications tool for the masses has been realised, and the twenty-first century
will be remembered as the video age. Surveillance and counter-surveillance aside,
video is the vernacular form of the era – it is the common and everyday way that
people communicate. Video is the way people place themselves at events and describe
what happened. In existential terms, video has become every person’s POV (point of
view). It is an instrument for framing existence and identity.

There are currently camcorders in twenty per cent of households in North America. As
digital still cameras and camera-phones are engineered to shoot better video, video
will become completely ubiquitous. People have stories to tell, and images and sounds
to capture in video. Television journalism is far too narrow in its perspective. We
desperately need more POVs. Webcams and videophones, video-blogs (vlogs) and
video-podcasting will fuel a twenty-first- century tidal wave of vernacular video.

(SHERMAN, 2008, p. 161).

The concept of video as “the people's medium” is even more relevant today.

Smartphone technology has thrust a camera into the hands of a huge and growing segment of

the population. Laptops and video games consoles increasingly come equipped with cameras

as standard.

The way we work with video and view the results are also changing. Sherman again

predicted:

Displayed recordings will continue to diminish in duration, as television time,
compressed by the demands of advertising, has socially engineered shorter and
shorter attention spans. Videophone transmissions, initially limited by bandwidth, will
radically shorten video clips. The use of canned music will prevail. Look at
advertising. Short, efficient messages, post- conceptual campaigns, are sold on the
back of hit music. Recombinant work will be more and more common. Sampling and

11

the repeat structures of pop music will be emulated in the repetitive ‘deconstruction’
of popular culture. Collage, montage and the quick-and-dirty efficiency of
recombinant forms are driven by the romantic, Robin Hood-like efforts of the copyleft
movement. Real-time, on-the-fly voiceovers will replace scripted narratives. Personal,
on-site journalism and video diaries will proliferate. On-screen text will be visually
dynamic, but semantically crude.

(SHERMAN, 2008, p.161).

If we examine the market for video tools, we may note that there is something of a

lack of tools which empower individuals and groups to work comfortably to achieve their

aims. Manovich (2001) explains what drives these goals:

If we are surrounded by highly dense information surfaces, from city streets to Web
pages, it is appropriate to expect from cinema a similar logic. In similar fashion, we
may think of spatial montage as reflecting another contemporary daily experience -
working with a number of different applications on a computer at once. If we are now
used to switching our attention rapidly from one program to another, from one set of
windows and commands to another, we may find multiple streams of audio-visual
information presented simultaneously, more satisfying than the single stream of
traditional cinema.

(MANOVICH, 2001, p. 328).

Although Manovich talks here about cinema, the same factors may apply to amateur

video. Sherman again describes what such video might look like:

Slow motion and accelerated image streams will be overused, ironically breaking the
real-time-and-space edge of straight, unaltered video. Digital effects will be used to
glue disconnected scenes together; paint programs and negative filters will be used to
denote psychological terrain. Notions of the sub- or unconscious will be objectified
and obscured as ‘quick and dirty’ surrealism dominates the ‘creative use’ of video.

(SHERMAN, 2008, p. 162).

If these are the kind of effects that a certain type of user might wish to create, how can

we classify this type of user ? What are their specific requirements, and how can we satisfy

them ? In this dissertation we examine these questions and propose a solution.

There are a great many software applications which exist that are directed towards

processing video. However, none of these applications completely satisfy the requirements for

a large segment of the market. If we agree with the statements of Sherman and Manovich

12

above, then each of these tools falls short of meeting the needs of those who would work with

modern methods of video production.

It is important to have a detailed specification for this target audience – those who

wish to work in new ways with video, and whose needs are constantly mutating. In this

dissertation we present an application called “LiVES”1 which can be shown to satisfy this

changing specification very well.

Development of the Free Software project, LiVES began in 2002, and it has been

updated continuously since then. There have been more than 350,000 downloads of the source

code to date (not counting binary versions).

Estimates of the cost to produce this software commercially have arrived at a figure of

almost $4,000,000 USD, as will be discussed later. Other estimates can be made to show a

figure of over 10,000 users. LiVES has also received some excellent reviews in the media

In Chapter 2, we will examine the state of the art for video applications, which can be

roughly divided into the categories of VJ applications, video editing applications, and video

programming environments. Here, we present a brief overview with examples of some

instances of each type of application.

In Chapter 3, we discuss in detail the problems faced in (identifying our target

audience), profiling their needs, and developing a system to satisfy them.

Chapter 4 describes our methodology for resolving the issues which were identified

in the preceding chapter.

Chapter 5 deals with the concept of the LiVES application, the technical and non-

technical requirements, and the challenges faced in developing such software.

Following this, Chapter 6 explains the history and philosophy of LiVES, along with a

look at the functional and technical architecture of the application.

In Chapter 7, we present the results of our study, to see how well LiVES fulfills the

needs of our target audience.

The remainder of this dissertation consists of our conclusions, followed by a list of

references, and appendices.

1FINCH, G. LiVES website. Available at: <http://lives.sourceforge.net>. Accessed: 13 Jun. 2013.

13

It should be noted that Appendix A contains a list of definitions for some technical

terms (MIDI, OSC, and so on) used in this dissertation, to which the reader may wish to refer.

14

2 THE PROBLEM AND REQUIREMENTS FOR ITS SOLUTION

Throughout this dissertation we use a term of our own invention: “Experimental VJ”,

which is not generally found in the literature. By this, we mean an individual, or a group

collaborating together, from a particular subset of VJs – those who are interested in novel and

experimental techniques, pushing forward the boundaries of this evolving art-form.

Experimental VJs have various requirements which can be different from individual to

individual (or group to group) and can change over time. These requirements are therefore

extremely dynamic.

There exist distinct categories of software which attend to these requirements. As

mentioned in the preceding chapter, the vast majority of video software falls into the three

categories of VJ applications, video editing applications, and video programming

environments.

By itself, a program which fits within one of these categories may be insufficient to

fulfill the requirements of an Experimental VJ. From a user's point of view, it would seem

advantageous to combine these areas in a single system.

As an example, if a person working mostly with a VJ application wanted to prepare

material (clips, camera footage, animation sequences) prior to presenting it, they would

generally use a program such as Premiere, After Effects or Final Cut to do this, then use the

VJ tool to present that material2, since most, if not all VJ applications lack advanced or user

friendly editing features.

Should that person then wish to control their presentation programmatically, they

would likely be required to use a third tool, for example Pure Data, or Isadora.

In Chapter 4, we examine more closely the specific features which are lacking from

example programs for each of the traditional categories of video programs.

2.1 ADVANTAGES

2WIKIPEDIA, VJing, Common Technical Setups. Available at:
<http://en.wikipedia.org/wiki/VJing#Common_technical_setups>. Accessed: 13 Jun. 2013.

15

A single system which combined these areas would simplify the workflow for users in

many instances, due to the need to employ only one application, rather than make use of

multiple applications. This may have the additional positive effects of reducing the amount of

processing required, and increasing the quality of the resulting output - since it may eliminate

the need for conversions between formats, frame sizes, frame rates and so on which may be

required otherwise when transferring material from one application to another. The time

savings due to this may also be a factor. A VJ will often arrive for a performance, only to be

handed some material (clips, camera footage and so on), which they are asked to incorporate

in the performance. If this material needs some preparation, then it would be useful and

convenient if this could be done entirely within the same application which they will use for

performance – so that the results can be tested straight away. If preparation time is very

limited, as is often the case, then it would be advantageous not to have to export/import, re-

encode and arrange clips, then test to see how they fit with the rest of the material.

A second advantage for users may be that it would allow them to experiment and make

greater use of their creative talents by exploring other areas of video processing. For example,

anecdotally, various users who are focused mostly on non-linear editing have expressed that

they find the use of VJ applications as “fun and stimulating for the imagination”. On the other

hand, those users who are more focused on real-time processing, would have access to the

tools they need to both prepare their material, and also to record and possibly encode their

performances, by making use of the non-linear editing features within such a system.

When talking about traditional video editing applications, Miles (2008) opines:

These systems, just as with word processing, offer all the advantages of the digital for
the production of content, but remove them for the user at the point of publication.
For example, while using a word processor it is trivial to move text, annotate it (with
voice, image or other text), change fonts, resize the screen and so on. But as a word
processor all of these tools are actually directed towards getting those words on paper
(hence pagination, page numbering and so on). Once on paper, all of those functions
just listed (and many others) are gone. It is exactly the same with video, where
similarly the video work is malleable and fluid in quite extraordinary ways while
being edited, but once committed to publication these features are removed – it
becomes resolutely and immutably flat. This is what I have, elsewhere, described as
the distinction between hard and softvideo, where in softvideo it is possible to imagine
a video architecture and practice that is able to retain this granularity after
publication, where videos can be created that consist of shots that no longer have a
canonical sequence. The multiplicity of possible relations between shots, which
granularity affords, can then be preserved and made available to the user or viewer
as a material property of the completed video text.

(MILES, 2008, p. 224).

16

According to Miles' definitions, such a system as we are discussing would combine the

best features of “hard” and “soft” video.

In addition to the advantages touched on for users, such a system would also have

benefits from a development point of view. Much of the code base of applications in each of

the categories denoted above would, by necessity, be very similar. For example, in a VJ

application, source frames are read from the input clips, effects may be applied, and the

output is displayed. For a video editing application, the process would likely be similar,

except that each output frame is stored as a file. In a VJ application, obtaining an input frame,

applying effects, and display must be highly optimised to function in real time. Optimisations

here would also be beneficial to a video editing program, since it would translate into faster

rendering, and due to the fact that even in a non-linear editing application, there is still the

need to preview the end result and play it back in real-time. For a video programming

environment, again, the same factors apply, except that in this case the control may come

from outside the application, via a network interface rather than through human interaction

with its graphical interface or keyboard. Improvements to the multitrack video editing side

could well translate into a more feature rich, responsive and optimised real-time recording

system.

The objective of this research, therefore, is to develop an application of this type.

2.2 REQUIREMENTS

It is useful at this point to examine the requirements for an application both in terms of

specific features and more general attributes. Regarding specific features for our target set of

users, data for their requirements are difficult to ascertain, as almost no formal study has been

carried out in this area. In order to compile such a list, the author carried out the following

procedure:

• Data Collection

The author collected data relating to the principal applications in the area of video

processing, making use of online research and other sources. Material was gathered by means

17

of Google searches, specialised forums, chats with application developers and online book

research. From this, a list of representative software packages was selected. Applications

which are no longer in active development were discarded from the list.

• Benchmarking

For each of the selected applications, the features and capabilities were noted, and a

cross-reference of comparative features versus applications was created. The features were

discovered by means of the application websites, reviews and blogs, enquiries made to users

and in some cases observing a demo of the software running.

• Selection of Features / Requirements

The author derived a list of required features for Experimental VJs, based on reading

the literature, discussions with specialists (for example at conferences and seminars),

feedback from users, and his own personal experience as an Experimental VJ. The importance

of the selected features is validated in Chapter 7.

With regard to non-specific features, this is discussed in more detail in section 5.2.

The main elements are feature completeness, flexibility of design and implementation, a high

level of performance/responsiveness, be easy to use and intuitive, and to demonstrate stability

of operation.

In our results we show that LiVES does indeed meet all of these requirements,

providing and in many cases expanding on the basic list of specific requirements, and scoring

highly when rated on non-specific elements.

18

3 AN OVERVIEW OF VIDEO PROCESSING APPLICATIONS

The vast majority of video processing applications fall into two major categories and

one minor category. The major categories are VJ applications (for working with real-time

video) and video editing applications (for working with non-linear video). The minor category

contains tools which can control video processing (playback, conversion, display, etc)

programmatically. We will look at each of these areas in turn, focusing on popular non-

academic works (since very few of these types of applications have been developed purely for

academic research).

3.1 VJ APPLICATIONS

VJ (Video Jockey) applications are generally used to provide real time video for shows

and other events; frequently the video is synchronised with music. The video inputs may

come from various sources including pre-recorded clips, camera inputs, generated video and

text overlays. Effects are often applied to the images and streams may be mixed together in a

variety of ways.

The earliest VJ setups used purely analogue video, mixing television streams via a

video mixing box. Most modern equipment is now completely digital.

One of the few academic works which relates to this area, Jácome (2007), presents an

overview of the history of visual performance - from its conception in ancient times, when for

example, firework displays and shadow theatre were popular forms of visual entertainment -

up to the present day.

In the twentieth century there was a key development in the field of visual

entertainment. The advent of the home computer for the first time placed the ability to create

interesting and entertaining digital video effects in the hands of the everyday user. One of the

first tools to take advantage of this was Video Toaster3 which was first released in 1990.

3A look at the Video Toaster for the Amiga computer, 1990. Video clip. Available at:
<http://www.youtube.com/watch?v=zyGCYoZ5Nlk>. Accessed: 13 Jun. 2013.

19

The NewTek Video Toaster was a combination of hardware and software for the
editing and production of standard-definition video in NTSC, PAL, and resolution-
independent formats...It comprises various tools for video switching, chroma-keying,
character generation, animation, and image manipulation.4

The earliest versions were produced for the popular and affordable Commodore Amiga

home computer; the Video Toaster product sold for $2399. Due to the relatively low cost and

wide range of features, the product was considered revolutionary at the time.

In 1989, Fujitsu began producing a computer for the Japanese market called “FM

Towns”5. The machine was equipped with graphical capabilities which were extremely

advanced for the time – it supported 24 bit colour at a resolution of up to 1024x1024 pixels,

and in addition had a unique feature: the ability to overlay two different display modes

simultaneously. Experience with this machine during the 1990s led to some new

developments in the field of accessible video manipulation – as an example, the hardware

inspired Kentaro Fukuchi to begin creating the program effecTV6 (FUKUCHI; MERTENS,

2004). The effecTV program was later ported to the Linux operating system, released as open

source, and further developed. Due to the availability of the code and the clever programming

of the effects, these effects have in turn been adapted for many other systems.

These innovations and others contributed to a growing popularity of D-I-Y video

performance, using off-the-shelf hardware and homegrown software.

In parallel with this, the 1980s and 1990s witnessed a new movement: the so-called

“demoscene”. Participants within the demoscene sometimes worked alone, but more

frequently in groups; but whatever the case, the goal was always the same – to produce ever

more spectacular “demos”, demonstrations of skill at programming; creating programs which

produced entertaining video and audio, using whatever hardware was at hand. The demoscene

helped to further popularise the idea that audio, and in particular, video, could serve a purpose

for entertainment – not only in the traditional cinematic sense, but rather by playing with the

parameters of the video itself – overlaying one video clip on another, warping the video

“screen”, altering the viewer's perspective, changing or rotating the colours and so on. It is

4WIKIPEDIA, Video Toaster. Available at: <http://en.wikipedia.org/wiki/Video_Toaster>. Accessed: 13 Jun.
2013.
5ONLINE article about FM Towns. Available at: <http://www.giantbomb.com/fm-towns/3045-108/>. Accessed:
13 Jun. 2013.
6ABOUT EffecTV. Available at: <http://fukuchi.org/research/effectv/>. Accessed: 13 Jun. 2013.

20

these ideas which have inspired modern VJs, and the developers of software of which they

make use.

Most people are familiar with the term DJ – Disk Jockey, a person who plays and

mixes music for performance events. A VJ – Video Jockey - is the visual equivalent of this – a

VJ will play and mix visual clips and effects. In general, this is done to accompany music –

played either by a DJ or by live musicians. Some VJs also operate as a DJ – providing both

visual effects and audio, although this is not always the case.

Over time VJs have developed some standard techniques for providing interesting and

entertaining results. These techniques can include:

• Playing video at varying rates – slow motion, fast motion, reverse playback can all be

used.

• “Scratching” or jumping the video frames around – scratching is analogous to the

technique of the same name used by DJs, meaning rapid backwards and forwards

movements of the source(s), in this case video frames. Jumping the video frames

around can also be used – for example one playback technique offered by some video

tools is “nervous” mode, whereby the frames are skipped around by a few frames

ahead or a few frames backwards in a random fashion.

• Mixing or overlaying two or more video sources may also be done. A variety of

methods can be used here – the screen may be divided into geometrically distinct areas

with each area showing a different video source. Alternately the video sources can be

mixed, either by averaging the colours, or by using some other function – multiplying,

dividing, or subtracting for example. In other cases some areas of one clip may be

made transparent so that areas from a clip “behind” it are visible there.

• Applying one or more visual effects to the video – for example, altering the colours or

mirroring one part of the screen to another. Effects are used very commonly by VJs to

increase the visual attraction of the images, to create strobe-like effects and so on.

• Overlaying text or other symbols on the video.

All of these techniques may be combined together or may be used individually. Often

the VJ attempts to synchronise changes in the video to coincide with music which is playing,

in order to create a qualitatively more harmonious sensation for the audience.

21

Video may come from a variety of sources – some from pre-recorded material, some

from video cameras, and other material may be generated dynamically. Quite often, the VJ

tries as much as possible to make the source material relevant to the music being

accompanied. This can affect the choice of the source material. The VJ can even expand on

the themes of the music, thus enhancing the experience for the audience and increasing the

appreciation of the musicians. For more abstract music, the emphasis may fall more on

dynamically generated material, and synchronising the video changes in time with the beats of

the sound may be more important here. In other cases the video may be the main attraction –

reversing the role for the music, or there may be no audio at all.

Comparing VJs to DJs, Spinrad (2005) explains:

But there’s another side of DJing, its cultural collage—selecting, mixing, and
juxtaposing music and other sounds to draw parallels and distinctions among the
sampled components. And for this creative intent, VJing blows DJing away
completely. The VJ’s palette is far broader, encompassing any imagery at all,
recognizable or obscure, abstract or representational, iconic or ambiguous. The
elements can also be combined more freely, anything mixed with anything, without
worrying about key, or beats per minute, or whether they sound good together. The
dissonances a VJ creates are cognitive, not musical.

(SPINRAD, 2005, p. 14).

The field in which VJs operate is a very competitive and dynamic one. In order to

compete more effectively and to provide a better experience for the audience, new techniques

are constantly being developed. For example, it is usual for VJs to project onto flat projector

screens; however many VJs have experimented by changing this, for example, projecting on

water screens produced by high pressure jets. This produces the effect of a screen floating in

mid-air, and it can be viewed equally well from both front and back.

A recent development in this field is the technique of video mapping. This technique

is frequently used to project onto the surface of buildings outdoors (Figure 1), but it may also

be employed indoors. Here the projection surface is not a flat screen but maybe bumpy, and

there may be features such as doors, windows and balconies visible. Video mapping takes

advantage of this by enabling the VJ to make use of the existing features as part of the

projection. The VJ first maps the projection surface, noting the features and their positions

and sizes, as well as the overall shape of the target. These features are then incorporated into

the video projection - for instance a different image could be projected around the windows

22

versus the rest of the building.

In view of this changing environment, a great deal of experimentation is involved in

the art of VJing. The term “Experimental VJ” could be applied to a great many individuals

and groups operating within this field. VJ activities are by their very nature, experimental.

This differs from more conventional computer activities, such as word processing or sending

email, where the requirements are well established, and not subject to rapid change. We will

return to this topic later on.

3.1.1 Example applications

Today, there are a few programs designed specifically for the VJ market – here we will

look at three examples of these - Arkaos, Resolume, and the free software program Veejay.

Figure 1: An example of video mapping projection

Source: youtube.com

23

Arkaos7

Arkaos GrandVJ (Figure 2) is a
well known professional VJ
application. It supports features
such as MIDI mapping, OSC
control, video generators and
multiple monitors. It runs under
Windows and Mac OS X, and
has a price of $399 USD.

The basic idea in Arkaos is the use of cells. A cell can be mapped to a video clip,

camera input, or an effect, and then subsequently linked to a key on the computer keyboard.

Cells can also be assigned an area on the screen in terms of x and y coordinates. In “mixer

mode”, Arkaos allows up to 8 layers of video to be combined onto a single screen. In “synth

mode”, the cells can be played back by pressing various keys on the keyboard. Arkaos also

has a MIDI (Appendix A – Definitions) learner interface which can be used to link keys on the

keyboard to the knobs, sliders, keys and other controls on a MIDI controller. Effects can be

driven by audio input, and it is possible to control the application using OSC (Appendix A –

Definitions).

Resolume8

7ABOUT Arkaos GrandVJ. Available at: <http://vj-dj.arkaos.net/grandvj/about>. Accessed: 13 Jun. 2013.
8RESOLUME website. Available at: <http://resolume.com/>. Accessed: 13 Jun. 2013.

Figure 2: Arkaos GrandVJ

Source: softonic.com.br

24

Resolume Avenue VJ software
(Figure 3) is another popular VJ
tool. Like Arkaos, it runs on
Windows and Mac OSX, but is
not supported on Linux. It has a
price tag of EUR 299.00 for a
single computer.

Like Arkaos, Resolume can mix multiple layers of video, it can be controlled by a

MIDI controller, and via OSC. Resolume has a fairly limited set of input format options:

Quicktime or AVI video formats, and PNG and JPEG images. However, this may be sufficient

for some VJs.

Veejay9

9VEEJAY website. Available at: <http://www.veejayhq.net/>. Accessed: 13 Jun. 2013.

Figure 3: Resolume

Source: youtube.com

25

Veejay (Figure 4) is a real-time
video sequencer and effects
processor. It runs under the
Linux operating system, and is
Free / Open Source software,
and is available at no cost. It
supports features like OSC
control, integration with Jack
audio, and performance
recording. The latest version of
Veejay is 1.5.8 which was
released in 2011.

It is important to note that all of these applications share the same key features, and

follow the similar paradigms of usage: a set of video clips and other sources (e.g. cameras) is

imported, and these are commonly displayed as thumbnails within the interface. The user can

select between the clip thumbnails, and also apply real-time effects. The output of the clips

and effects is displayed, generally on a second monitor (or projector). Some programs also

allow the operator's performance to be recorded.

3.2 VIDEO EDITING APPLICATIONS

The second category of video processing applications is video editing. Here the goal is

not necessarily to display the output in real time but rather to produce one or more encoded

clips. A timeline is used to lay out the pieces which will be joined together to produce the

finished result. Effects and transitions may also be applied, but here there is less need for the

effects to operate purely in real time.

The earliest editing systems were video tape based and hugely expensive:

Figure 4: Veejay

Source: linuxlinks.com

26

The 2" Quadraplex system cost so much that many television production facilities
could only afford a single unit and editing was a highly involved process requiring
special training.10

The advent of home computers again put these kinds of tools in the hands of ordinary

users, without the need for any specialised hardware, and today there are dozens of

applications dedicated to this field of use.

3.2.1 Example applications

Below we list some examples of video editing applications, although many more exist.

Adobe Premiere11

Adobe Premiere (Figure 5) is a
popular commercial video
editing application. It has
advanced features such as a
multitrack timeline, subtitling,
and broad format support. It runs
on Windows and Mac OSX. It is
available only on a subscription
basis, which costs $19.99 per
month for the basic plan.

The building blocks of movies in Premiere Pro are sequences, which appear as tabs on

10WIKIPEDIA, Video Editing. Available at: <http://en.wikipedia.org/wiki/Video_editing>. Accessed: 13 Jun.
2013.
11PRODUCT page for Adobe Premiere. Available at: <http://www.adobe.com/products/premiere.html>.
Accessed: 13 Jun. 2013.

Figure 5: Adobe Premiere

Source: adobetrainingni.com

27

the timeline. These sequences can be moved around, adjusted and trimmed, before the final

mix is rendered. As with almost all video editing applications, the timeline is arranged

horizontally in terms of time, with a series of tracks arranged vertically. During playback, the

play cursor moves along the timeline, and depending on the sequence of effects applied, one

or more of the clips at that point in the timeline is shown in the preview window. In addition

to video tracks there are audio tracks – the audio may be either attached to a particular video

clip, or it may be set as a separate backing audio track. Once the layout on the timeline is

ready, the layout can be rendered (written to actual frames) and encoded to create a completed

video file.

Final Cut12

Final Cut (Figure 6) is another
popular video editing
application. Like Premiere, it
has an advanced multitrack
editing interface, but does not
appear to support individual
clip editing. The program runs
exclusively under Mac OSX,
and has a price tag of $299.99.

Final Cut Pro (FCP) has extensive media management features. Source clips can be

arranged by metadata, for example – number of people in the shot, long, medium or short

range, and so on. Keywords can also be applied to clips, or parts of clips, even before

importing them, so it is a good tool for managing a media collection. These features are

mainly important for those working in professional video editing studios, who may have

many thousands of source clips to manage.

12PRODUCT page for Final Cut Pro. Available at: <http://www.apple.com/finalcutpro/>. Accessed: 13 Jun.
2013.

Figure 6: Final Cut Pro

Source: alltechnews.com

28

FCP uses a so-called “magnetic timeline”, which means that when any clip is moved

around on the timeline, other clips will automatically move out of the way, move to higher or

lower tracks and so on. This is a useful feature in some instances, but in other cases it may get

in the way of what the user wishes to achieve.

Performance of FCP is another of its touted features - owing to the fact that the

program is a native Apple application, and thus can make comprehensive use of the machine

hardware.

Kdenlive13

Kdenlive (Figure 7) is a Free
Software video editing
application for Linux and Mac
OSX. It supports such features
as camera inputs, frei0r effects
compatibility, and a multitrack
editing interface. It also has
some basic clip editing facilities.
It is available free of charge.

OpenShot14

13KDENLIVE features page. Available at: <http://www.kdenlive.org/features>. Accessed: 13 Jun. 2013.
14OPENSHOT website. Available at: <http://www.openshot.org>. Accessed: 13 Jun. 2013.

Figure 7: Kdenlive

Source: ostree.org

29

OpenShot (Figure 8) is another
Free Software video editing
application for Linux. It has a
multitrack timeline, support for
frei0r effects, and a fairly basic
clip editor. It is available free of
charge.

Lightworks15

The Lightworks video editor
(Figure 9) is available for
Windows and Mac OSX, with a
beta version available for Linux.
At the present time, the source
code is not available. It has a
multitrack timeline, and support
for dual monitors.

Lightworks Pro costs $60.

The applications mentioned above have largely similar features and paradigm of

15LIGHTWORKS website. Available at: <http://www.lwks.com/>. Accessed: 13 Jun. 2013.

Figure 8: OpenShot

Source: ubuntugeek.com

Figure 9: Lightworks

Source: editshare.com

30

usage. There is a timeline with multiple tracks of audio and video, onto which clips can be

dragged or inserted. Effects and transitions between clips can also be placed on the timeline.

The content of the timeline can be previewed and rendered to a new clip.

Blender16, however, differs in its objectives and mode of use. Blender is actually a 3D

rendering application which now has a multitrack timeline for rendering video. It has been

used in several productions, for example: Elephants Dream17, Sintel18.

There is no mention of the video editing features on the Blender website - the features

that are mentioned refer to it as a rendering/animation tool. Elsewhere, the video tool within

Blender is referred to as the “Video Sequence Editor” (VSE). Rather than operating as a

general purpose video editing tool, the VSE in Blender is designed specifically for use with

the models which are generated within the application.

The Blender application (Figure
10) is available at no charge.

The software will run on
Windows, Mac OSX and Linux.

One advantage of Blender's Video Sequence Editor is its tight integration with the 3D

rendering features of the software. For experienced users this means that it is easy to switch

between modeling and movie production. The VSE follows the same interface design as the

16BLENDER website. Available at: <http://www.blender.org/>. Accessed: 13 Jun. 2013.
17ELEPHANTS dream. Video production. Available at: <http://www.elephantsdream.org>. Accessed: 13 Jun.
2013.
18SINTEL. Video production. Available at: <http://www.youtube.com/watch?v=eRsGyueVLvQ>. Accessed: 13
Jun. 2013.

Figure 10: Blender

Source: theguardian.com

31

rest of the Blender application (Figure 11), meaning that it would benefit mostly those who

are already familiar with the other modes. Those users who are not familiar with Blender,

however, may find it difficult to navigate around.

3.3 VIDEO PROGRAMMING ENVIRONMENTS

Working with video programming environments is a still more recent development

than working with video presentation or with video editing, since the tools needed for the

former are totally reliant on computer technology. Such tools first appeared in the early

demoscene days. Demoscene coders made extensive use of procedural video programming

languages in order to fit within the hardware limitations of the time. Using these kinds of

tools, the production, treatment and output of video may be controlled programmatically -

perhaps by a script or by another application.

In addition, these types of tools may allow data to be processed, combine data with

audiovisual material, or else extract data from audio or video. Some examples of this type of

tool include Pure Data, Isadora, FreeJ, and the programming language named Processing.

Such tools are frequently used for artistic installations, but may have different uses –

for example for static or dynamic image analysis.

Figure 11: The Video
Sequence Editor in Blender

Source:
freesoftwaremagazine.com

32

3.3.1 Example applications

Again, there are quite a few applications which have been produced for this purpose.

Here we list some of the more commonly recognised ones.

Pure Data19 / MAX/MSP20

Pure Data (PD) is an Open Source visual programming language. It does not have a

fixed graphical interface as such – rather, the user must connect together basic components

(objects) in the interface to create what are termed “patches” (example, Figure 12). The

program has a steep learning curve, generally requiring a good deal of study before one can

go on to become proficient with it. A large number of components and patches have been

created which allows for for a great deal of flexibility. However these components must first

be studied, understood and connected together in specific ways.

19PURE Data website. Available at: <http://puredata.info/>. Accessed: 13 Jun. 2013.
20MAX/MSP website. Available at: <http://cycling74.com/>. Accessed: 13 Jun. 2013.

33

The name “patch” is generally understood to be an analogy with early analogue audio

synthesisers. The operator would modify the synth by connecting (or “patching”) the elements

of the instrument together physically, using wires (“patch” cords).

PD was originally developed by Miller Puckette in the 1990s. It is based on his

original MAX program (which in turn has now developed into MAX/MSP – a commercial

version of the original MAX). PD is an example of what is known as a data-flow

programming language. It is a programming language only in the sense that it can be used to

construct applications. In a standard programming language, the flow of operation proceeds in

one direction only – these languages can be represented one dimensionally. Visual

programming languages take this a step further and add more dimensions to the program flow.

Video capability has been added to PD using a set of externals (libraries) referred to as

GEM (Graphics Environment for Multimedia). GEM provides support for many objects, such

Figure 12: An example of a patch in Pure Data

Source: noisefloor.org

34

as polygon graphics, lighting, texture mapping, image processing, and camera motion. Other

similar extensions include PDP, PiDiPi, Framestein and GridFlow. An equivalent framework

for MAX/MSP is Jitter.

Isadora21

Isadora (Figure 13) is a video
processing environment with a
graphical interface. Elements
called “actors” can be arranged
in patches in a similar fashion to
Pure Data. Output can be
displayed on up to six different
monitors, and performances can
be recorded and encoded to the
Quicktime format. Isadora is
available for a standard price of
$350. It will run on Mac OSX or
Windows.

Isadora provides interactive control over digital media, with special emphasis on the

real-time manipulation of digital video. An Isadora program is created by linking together

graphically represented building blocks, each of which performs a specific function: playing

or manipulating digital video, capturing live video, looking for MIDI input, controlling a DV

(digital video format) camera, etc. By linking the modules together one can create complex

interactive relationships that can be controlled in real time, either with the mouse and

keyboard, or with external devices.

Notable features include the ability to composite numerous layers of video, a host of

video effects possibilities, its ability to output to as many as six separate video projectors, and

a powerful offering of input and output protocols. The latter (which includes OSC, MIDI,

Serial, TCP/IP, and game controller devices) are essential for works that require real-time

sensory input.

21ISADORA website. Available at: <http://troikatronix.com/>. Accessed: 13 Jun. 2013.

Figure 13: A patch in Isadora

Source: vjskulpture.wordpress.com

35

Processing22

Processing is a text based programming language which is often used for video

programming, due to the inclusion of a dedicated video library23 (Figure 14). Processing is

free to download and use, and is open source. It is supported on the Windows, Mac OSX and

Linux platforms.

FreeJ24

FreeJ is described by its creator as a “Free Vision Mixer”. It consists of a

commandline based core, but a graphical interface exists for Mac OSX. FreeJ has an

22PROCESSING website. Available at: <http://www.processing.org>. Accessed: 13 Jun. 2013.
23Processing - video library API. Available at: <http://www.processing.org/reference/libraries/video/index.html>.
Accessed: 13 Jun. 2013.
24FREEJ website. Available at: <http://freej.org/>. Accessed: 13 Jun. 2013.

Figure 14: Video library API in Processing (screenshot from website)

Source: processing.org

36

interpreter which can run scripts written in JavaScript and it can also be used as a C++ library

for inclusion in other programs. It is Free/Open Source software and will run on MacOSX and

Linux. It can be downloaded and used free of charge. A sample JavaScript script for freeJ

might appear as follows:

//simple script to test filter functionalities

img = new ImageLayer();
img.open("doc/ipernav.png");
img.activate(true);
img.start();
add_layer(img);
filt = new Filter("Distort0r");
img.add_filter(filt);

kbd = new KeyboardController();
register_controller(kbd);
kbd.released_q = function() { quit(); }
kbd.released_r = function() {
 if(reset("freej_equalizer.js")) {
 rem_controller(this);
 echo("reset ok");
 }
 return true;
}

bang = new TriggerController();
bang.frame = function() {

 a = 1/(rand()%200);
 b = 1/(rand()%200);
 filt.set_parameter("Frequency", a);
 filt.set_parameter("Amplitude", b);
}

register_controller(bang);

Using FreeJ one can overlay, mask, transform and filter multiple layers on the screen.

There is no limit to the number of layers that can be mixed. Each layer can be video taken

from different sources: movie files, webcams, TV cards, images, rendered text, flash

animations, generated video, and effects from the frei0r (Appendix A – Definitions) plugin

collection.

FreeJ has an asynchronous video rendering engine. It can be scripted using JavaScript

syntax in an object oriented way, to control its operations through a procedural list of

commands and actions.

37

3.4 ACADEMIC PROJECTS

Searches of Google were performed using keywords such as “user requirements video

applications”. The author also searched on CiteSeerX25 using keywords such as “video

applications”, “user requirements video applications”. The lack of articles covering the area of

user requirements for video applications indicates that very little scientific research has been

devoted to this topic. For this reason, the majority of references for this dissertation consists

of web documents, books and non-academic journals. However, a few academic projects have

been produced in this area.

ViMus26

ViMus (short for Visual Music) is a project which was started by Jarbas Jácome in

2003, as part of a masters course in Computer Music/Computer Graphics.

ViMus is different in that it takes the two dimensional paradigm of most visual video

programming environments such as PD and Isadora, and creates the illusion of a three

dimensional interface (Figure 15). As well as setting out modules on a flat plane in the way

these other frameworks allow, ViMus enables several of these layers to be stacked one on top

of the other.

25CITESEERX website. Available at: <http://citeseerx.ist.psu.edu>. Accessed: 13 Jun. 2013.
26JÁCOME, J. Vimus. Available at: <http://jarbasjacome.wordpress.com/vimus/>. Accessed: 13 Jun. 2013.

38

This allows far more flexibility in designing patches by providing a cleaner, clearer

view for the user. The layers may be partitioned logically – for example, input layer,

processing layer, and output layer. However, the main drawback is that most graphical

interface toolkits are designed with the idea of a two dimensional paradigm – thus the

development of the interface elements for a tool such as ViMus requires a great deal more

effort. In addition, it may take some time for the user to become acquainted to working in this

way, both in terms of control of the interface and conceptually.

The principle use of ViMus has been as a visual musical instrument, as the name

suggests. Audio which is fed in to the system is analysed, and the results of the analysis are

used to alter parameters of visual effects.

The sourcecode for ViMus was released in 2009 under a Free Software license.

Despite this, the application remains little known.

OpenCV27

27OPENCV website. Available at: <http://opencv.org/>. Accessed: 13 Jun. 2013.

Figure 15: Example of the interface of ViMus

Source: youtube.com

39

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common infrastructure

for computer vision applications and to accelerate the use of machine perception in the

commercial products. Officially launched in 1999, the OpenCV project was initially an Intel

Research initiative to advance CPU-intensive applications. The first alpha version of OpenCV

was released to the public at the IEEE Conference on Computer Vision and Pattern

Recognition in 2000. The main contributors to the project included a number of optimization

experts in Intel Russia, as well as Intel’s Performance Library Team.

Application areas include: facial recognition, motion tracking, augmented reality,

gesture recognition, and mobile robotics. It can also be used in machine learning software, for

example for artificial neural networks, Bayes classification, and decision tree learning.

OpenCV is licensed under the BSD license, and runs on several operating systems including

Windows, Android, BSD, Linux and Mac OSX.

40

4 METHODOLOGY

In this section we explain the methodology used to develop an application in order to

satisfy the key requirements of Experimental VJs.

Previous research by Boehm and Turner (2003) suggests that the best methodology to

use would be Agile type software methods, as Table 1 highlights:

Table 1: Suitability of various development methods

Agile method Plan-driven method Formal methods

Low criticality High criticality Extreme criticality

Senior developers Junior developers Senior developers

Requirements change often Requirements do not change
often

Limited requirements, limited
features

Small number of developers Large number of developers Requirements that can be
modeled

Culture that responds to
change

Culture that demands order Extreme quality

Source: Boehm; Turner (2003)

The Agile software development process is based on an iterative approach. It is

important to bear in mind that the Agile process is very different from plan-based and formal

methods of software development. In each iteration, a set of requirements is created, a

prototype is developed from the requirements, and the prototype is then validated. The results

of the validation are used to generate the subsequent prototype, and the cycle is repeated.

Intuitively, this was the method used to develop the LiVES application up to the current point.

For the purposes of this dissertation, the present cycle has been carried out in more

depth than usual, with a somewhat deeper analysis of the current requirements and

validation of the prototype. This provides the basis of our current scientific research.

The method we use is composed of three phases: conceptual, development and

validation. We begin with a little background for the conceptual phase, namely the analysis of

video applications which was carried out as a part of this research. This was done in an

intuitive / exploratory fashion, rather than using formal scientific techniques.

41

4.1 ANALYSIS OF VIDEO APPLICATIONS

A few months prior to writing this paper, the author performed searches on Google for

topics such as “video applications”, “VJ applications”, and “video programming

environments”. The top entries were selected as generally being an indication of popularity of

packages. The results were then further filtered manually in order to create what the author

considers a representative sample of current video applications.

The author then carried out a benchmark examination of the selected video software

applications, collating a list of their attributes and features. The various applications were

analysed by reading reviews and visiting the application websites. In some cases the author

was able to observe users demonstrating some of the features of the software package.

Some anecdotal stories were recalled by the author regarding the history of video

applications. The author is also frequently in contact with the developers of various Free

Software video applications via mailing lists, email, and chat.

In order to further assist with the research for this paper, the author sent a

questionnaire (shown in Appendix B) to users and potential users of video applications via the

LiVES user mailing list and website. The participants were asked which features in a video

application (in this instance only LiVES was referred to) were important to them. A total of

fifteen responses were received during the short time allotted. A second part of the survey

asked participants to rate the LiVES application in five non-technical areas. Finally, a third

section asked what (if any) additional features the participants felt would be useful for future

development of the LiVES application. The raw data are presented in Appendix C.

4.2 CONFERENCES AND SEMINARS

The author had the good fortune to be invited to participate in the Piksel Festival28 held

in Bergen, Norway, in the years 2003, 2004 and 2005. The festival began as an organised

meeting of Free Software video application developers. There were numerous technical
28PIKSEL FESTIVAL. Bergen, Norway. Available at: <http://www.piksel.no/>. Accessed: 13 Jun. 2013.

42

discussions and hands-on coding sessions, mixed in with performances and demonstrations by

the developers themselves. During these meetings, it became clear that there were three areas

which would benefit from collaboration between the various projects: sending and receiving

video in real time between applications; a common framework for video effects, and a

common language for programmatically controlling applications.

Other attendees at the first meeting included developers of Veejay, Pure Data, FreeJ

and effecTV. Obviously this part of the research was done much prior to the other conceptual

phases.

4.3 CROSS-REFERENCE OF APPLICATIONS

As a result of this study, the author was able to compile a list of required features and

create a cross reference with a selection of more commonly used video applications. Table 2,

below, shows this information in tabular form. The requirements themselves are discussed in

Chapter 5, however it should be noted that none of the benchmarked applications by

themselves satisfy all of the potential needs of an Experimental VJ.

43

Table 2: Comparison of technical features in various video applications

A
p

L
S

R
E

E
F

F
C

J
A

C
R

O
S

M
J

I
F

O
F

V
R

C
E

P A
C

T
V

R
P

V
4

M
M

M
E

F
W

A
P

S
S

T
H

A
R

* * M * * $$ * (1) * ? * *

R
E

*
(2)

* M ? $$? ? (1) * ? * *

V
J

* * * * * * ? * * * * * * (3) * ? *

A
P

* ? * * * $$? ? * * ? * *

F
C

* ? * * $$? * * * * *

K
L

* ? * ? * * * * * * ? *

O
S

* ? * ? * * * * * * * * * *

L
W

(4) ? * * * * $
(4)

* * * * *

B
L

* * ? ? ? ? * * ? * *

P
D

* * ? * * ? * * ? ? * * * ? * ? ? * ?

IS * ? ? * ? * $$? * * ? *

Source: Finch (2013)

Notes Notes

(1) Arkaos and Resolume support Syphon for
OSX, which appears to be similar to v4l.

(2) Resolume supports SMTP
timecodes which are similar
to jack transport.

(3) Veejay supports v4l input only (4) A limited beta of Lightworks
is available for Linux

44

Key Meaning Key Meaning

* Feature is known to be supported <space> Feature is known to be
unsupported

? No information about feature

$ Price < $100 $$ Price >= $100 (per year)

AR Arkaos GrandVJ LS Linux Support

RE Resolume RE Real-time effects

VJ Veejay EF Edit individual frames

AP Adobe Premiere FC Frei0r compatibility

FC Final Cut JA Jack audio integration

KL Kdenlive CR Crash recovery

OS
(Left)

OpenShot OS
(Top)

OSC support

LW Lightworks MJ MIDI / joystick control

BL Blender IF Wide range of input formats

PD Pure Data OF Range of high quality output
formats (encoded)

IS Isadora VR Playback at variable rates /
reverse playback

CE Clip editor

P Price (Y = free)

AC Accessibility of code

TV TV Card / web-cam input

RP Ability to record
performances

V4 Video for Linux (v4l2)
support

MM Multiple monitor support

ME Multitrack editor

FW Firewire support

AP Audio plugins / filters

SS Subtitle / captioning support

TH Themes / user friendly GUI

45

29

It is also clear from the list of more common applications given above, that Linux

users are poorly served, especially in the area of VJ applications and video programming

environments (PD and Veejay being the obvious exceptions). Although Linux is still

considered a minority operating system, it nevertheless represents an important segment of the

community.

4.4 METHODOLOGY - FLOWCHART

The flowchart at the end of this section (Figure 16) shows the methodology used to

produce this dissertation. The phases on the flowchart correspond to the following:

Phase 1: Conception

As mentioned in Chapter 2, the steps carried out for this phase consisted of:

Phase 1.1: Data Collection

The author collected data relating to the principal applications in the area of video

processing, making use of online research and other sources. Material was gathered by means

of Google searches, specialised forums, chats with application developers and online book

research. From this, a list of representative software packages was selected. Applications

which are no longer in active development were discarded from the list.

29 Sources for the table:
<http://vj-dj.arkaos.net/grandvj/detailed-features>
<http://resolume.com/software/>
<http://veejay.sourceforge.net/veejay-HOWTO.html#2.1>
<http://www.adobe.com/products/premiere/features.html>
<http://www.apple.com/finalcutpro/what-is/#revolutionary>
<http://www.kdenlive.org/features>
<http://www.openshot.org/features/>
<http://www.lwks.com/index.php?option=com_content&view=article&id=24&Itemid=179>
<http://www.blender.org/features-gallery/features/>
<http://puredata.info/>
<http://troikatronix.com/isadora/features/>

46

Phase 1.2: Benchmarking

For each of the selected applications, the features and capabilities were noted, and a

cross-reference of comparative features versus applications was created. The features were

discovered by means of the application websites, reviews and blogs, enquiries made to users

and in some cases observing a demo of the software running.

Phase 1.3: Selection of Features / Requirements

The author derived a list of required features for Experimental VJs, based on reading

the literature, discussions with specialists (for example at conferences and seminars),

feedback from users, and his own personal experience as an Experimental VJ. The importance

of the selected features is validated in Chapter 7.

Phase 2: The Implementation of LiVES

Phase 2.1: Interface Definition

During the development of the application (increasingly so in the more recent

development), the author attempted to follow the guidelines set out in the Gnome Human

Interface Guidelines30. The salient points of these guidelines which apply to LiVES are:

• Design for people – know who your user base are and what you want to enable them

to do.

• Don't limit your user base – make the application accessible – for example, provide

keyboard commands for all menu options to cater for disabled users who may have

limited movements. Consider internationalisation and localisation issues.

• Create a Match Between Your Application and the Real World - Always use

words, phrases, and concepts that are familiar to the user rather than terms from the

underlying system. Use terms that relate to the user's knowledge of the tasks your

application supports.

30GNOME Human Interface Guidelines. Available at: <https://developer.gnome.org/hig-book/>. Accessed: 13
Jun. 2013.

47

• Make your Application Consistent - Make your application consistent with itself and

with other applications, in both its appearance and its behavior.

• Keep the User Informed - Always let the user know what is happening in your

application by using appropriate feedback at an appropriate time. When the user

performs an action, provide feedback to indicate that the system has received the input

and is operating on it.

• Keep it Simple and Pretty - Your application should enable the user to concentrate on

the task at hand. So, design your application to show only useful and relevant

information and interface elements.

• Put the User in Control - A user should always feel in control, able to do what they

want when they want.

• Forgive the User - allow users to quickly undo the results of their actions. If an action

is very dangerous, and there is no way to undo the result, warn the user and ask for

confirmation. In all cases, the user's work is sacrosanct. Nothing your application does

should lose or destroy user's work without explicit user action.

• Provide Direct Manipulation - Wherever possible, allow users to act on objects and

data directly, rather than through dialogs or explicit commands.

• In addition, there are general guidelines for different types of windows, alert dialogs,

graphical widgets and so on.

Phase 2.2: Creation of the Architecture

The architecture of the system is an important stage in the development of software,

where the main functional modules are designed, along with the interactions between them. A

large part of the architectural design was determined by the choice of the GUI toolkit used

primarily, GTK+31. The toolkit uses a system of graphical elements (widgets) which may be

nested using container type widgets. The widgets are not only set up graphically but they can

be made to respond to predefined events and signals by linking these signals to callback

functions. For example, when a button is clicked, the application will respond by calling

31GTK+ website. Available at: <http://www.gtk.org>. Accessed: 13 Jun. 2013.

48

whatever function was linked to the click signal for that button. Occasionally the application

will call the widget callback functions directly rather than via a signal from the GUI, for

example in response to an OSC message.

A further design decision was to split the application into a front end (written in C),

and a backend (written in Perl). The backend handles much of the interaction with the

operating system and with external applications, and can be used in an asynchronous fashion.

This allows the front end to be more responsive and to a large extent independent of the

underlying file system and operating system.

Another choice was to divide the software into a core application and plugins. There

are several good design reasons for this. Firstly it provides a more or less stable interface for

expanding the application. Code within the core can be altered and extended, but provided the

plugin API is not changed (or at least remains backwards compatible), then plugin code

should not be affected by these changes. This allows for parallel development of the software,

one or more developers can be working on the core whilst others can be focused on plugins.

In addition, plugin developers can remain concentrated within their area of knowledge – a

developer working on an effect plugin does not need to concern themselves with the details of

decoding various video formats, which can be done via a different type of plugin. The

overriding principal in LiVES is to make plugins as simple to write as possible – the idea

being to shift any complexity into the core. In this way the complex code only needs to be

written once. Another advantage is that plugins can make use of specialised components like

specific libraries or external binaries which may not generally be present on all machines. In

this way, the user is not required to install these components in order to use the application,

the plugin will simply not be loaded. This reduces the list of pre-requisites required to

compile and run the application. However the user can later install the external components

should they wish to make use of the corresponding plugins.

Regarding the architecture in general, the code should be well commented, to make it

more maintainable. Some guidelines recommend one line in five should be a comment. The

author considers this to be somewhat “overkill”, but nevertheless attempts to maintain a

comment ratio of at least one line in ten.

Phase 2.3: Creation of the Framework

49

As discussed in section 5.2, below, an application which intends to combine the major

features of a VJ application, video editing application, and video processing environment

requires an extremely flexible internal framework. The evolution of this (WEED) is described

in Chapter 7.

In addition to the general internal framework, the author devised a means for plugins

to request parameters from the core application (host), and for the host to display these

parameters graphically in a consistent yet flexible way to the user, and then return the values

to the plugin. The author has named this system “RFX” (originally the initials stood for

Rendered Effects (FX), since it was first envisaged for that type of plugin – however it is now

employed by many different types of plugin, demonstrating its usefulness).

RFX, in summary, operates in the following manner:

– a function in the plugin returns a list of parameters, with some predefined attributes for

each one. For example, an integer type parameter would have the attributes: name,

label text, default value, minimum value and maximum value.

– The host calls the plugin function, receives this list, and dynamically generates an

interface based on the parameter list. The host is free to do this in any way it chooses,

the only stipulation is that parameter widgets are assumed by default to be placed

vertically from top to bottom in order. Within LiVES this is done in a consistent way

to make all plugin interfaces familiar to the user.

– In addition, the plugin may send extra hints to the host about how the parameter

window should appear. For example, the plugin may hint that two or more parameters

should be placed on the same horizontal row – related parameters might be width and

height, x and y coordinates, for example. The plugin can also add explanatory labels.

There is also the concept of “special widgets”, which may be linked to more than one

parameter. An example of this would be a widget which displays the current frame,

and allows the user to click inside it to select a point. The x and y coordinates of the

point are linked to two numeric type parameters. Several types and subtypes of special

widgets are defined in the RFX specification - this list may be expanded in future

should the need arise. Note that these are only hints to the host, the plugin should be

written so as not to be adversely affected if the host chooses to ignore them.

50

– After displaying the interface, the host allows the user to set the parameter values, then

passes these back to the plugin.

The complete RFX Specification32 contains some elements which are only applicable

to rendered effect plugins. However the layout hinting part, along with the dynamic parameter

interface generation within the core has been found useful for other types of plugin too. GUI

interfaces for plugins have been discussed in the literature (MAYER, 2002).

It should also be noted that the frameworks were adjusted and updated during the

development process in order to enhance their functionality, fix errors in the original spec.,

and to allow for unforeseen circumstances. The changes were kept as minimal as possible,

and were carried out in such a way as to maintain backwards compatibility wherever possible.

Phase 2.4: Creation of the Application

The application was created, following the guidelines, architectural design and using

the framework discussed previously. The software was developed using a Free Software

license (GPL).

The advantages of a Free (Open) Source implementation and the process behind it

have been described by many, including Ðurković, Vuković and Raković (2008). Regarding

the development process, they note:

• The Open Source model does not function well in the early stages, since many

complex design decisions must be made, and spending too much time discussing these

would likely impede the progress of the project. The initial prototype planning is

generally not done publicly, but rather, is done by one individual or a small group. In

this way, the design can also be kept consistent. However, this does imply that some

decisions for the design must be postponed until later in the project.

• Open Source projects generally follow a model of prototype development, where the

initial project gradually advances in iterations. This allows for greater flexibility,

especially during the early development process.

• The code advances in small but constant changes, with fairly frequent version releases.

32FINCH, G. RFX specification. Available at: <http://svn.code.sf.net/p/lives/code/trunk/RFX/RFX.spec>.
Accessed: 13 Jun. 2013.

51

As the project becomes more widely used, feedback received from experts and users

can be employed to repair bugs and to extend the capabilities and feature set of the

project.

• As the project expands, the rate of bug reports increases – many users can find many

bugs. As these bugs are corrected, the software becomes more stable. At the same

time, more users means more feature requests; satisfying these new requirements

increases the capabilities of the software. However, the scope and the focus of the

project must be maintained.

• The availability of the code allows participants with varying skills and experience to

enter the development process, and to do so in a decentralised manner. In respect of

this, it is essential that additions and amendments to the main code base be reviewed

carefully by the core development team before they are included. This ensures that a

high level of quality is maintained throughout the evolution of the application. The

basic principle guiding this is a system of trust which arises naturally. More

experienced and more talented code authors are granted a higher level of responsibility

and authority in the project.

The above points are very important to keep in mind in order to fully appreciate the

history and direction of the LiVES development process, and the philosophy behind it. The

development method used is an Agile method: the overall direction is driven by the Open

Source model.

For reference, Table 3 below provides a comparison of Proprietary and Open Source

software development models.

52

Table 3: Comparison of Proprietary and Open Source development models

Proprietary software Open Source software

Resources Known Unknown

Planning Period Whole project Step by step

User Customer who purchased the
product

Participant in software
development

Target Fulfill the contract Solve the problem

Discipline Strong Weak

Development Secret, reliable Public

Cooperation Face to face Via the Internet

Quality warranty Management Competition

Source: Raymond (1999)

The concurrent evolutionary model of both requirements and architecture as we see in

LiVES has been nicknamed the Twin Peaks model (NUSEBEIH, 2001).

The GPL33 license was selected for the LiVES code for several reasons:

– personal preference of the original developer

– the desire to contribute to the Free Software community by ensuring that the code is

available to be reused in other GPL programs

– the wish to have all development carried out in the open, in order to encourage other

contributors to advance the project

– the ability to make use of the existing body of GPL code in order to help accelerate the

development of the software

Phase 2.5: Creation of the Plugins

The plugin interfaces (APIs) were designed and the plugins were created using the

frameworks described above, where applicable. The plugins were developed using a Free

Software license (GPL). The interface code between plugin and host has been developed

33GNU GPL license. Available at: <http://www.gnu.org/licenses/gpl.html>. Accessed: 13 Jun. 2013.

53

using the more permissive LGPL34 license, which provides the additional option for closed

source plugins to be used.

Phase 3: Validation of LiVES

There are two types of validation presented here for LiVES. The first is a functional

validation. In other words, the system should satisfy all of the functional requirements. In

section 7.1, we show a mapping between the obligatory requirements and the feature set of

LiVES.

The second type of validation is non-functional. In order to obtain this information,

some qualitative experiments were performed. A lesser emphasis was placed on statistical

analysis as a means of validation of LiVES as a tool for Experimental VJs, owing to the small

number of respondents in comparison to the number of users of the system. To compensate for

this, other measures such as the number of users are provided to demonstrate this point. The

following process was used for validation:

Phase 3.1: Questionnaires

Three sets of questions were presented to users via the LiVES mailing list and to

visitors to the LiVES website. The first set asked respondents to mark which features from the

feature list were important to them (in order to help gauge that the correct features had been

selected), and to better understand their relative ranking. A second set of questions asked the

respondents to rate the application in five non-technical categories. Finally, a third question

asked users what, if any, new features they would like to see implemented in LiVES, in order

to ascertain that no very important features had been omitted from the list.

Phase 3.2: Interviews

The author engaged in some short interviews via email with some of the more frequent

users of the system, which offered some insights into the ways the application is being

utilised.

34GNU LGPL license. Available at: <http://www.gnu.org/licenses/lgpl.html>. Accessed: 13 Jun. 2013.

54

Phase 3.3: Metrics

Various metrics and feedback relating to the project were analysed in order to provide

a fuller understanding of the impact of the application. Figures such as the number of users,

number of members of the user mailing list, as well as the results of reviews and ratings were

collated.

55

Figure 16: Methodology – Flowchart

Source: Finch (2013)

56

5 THE CONCEPT OF LIVES

5.1 FUNCTIONAL REQUIREMENTS

Following the methodology set out in Chapter 4, various features were selected as

being essential functional requirements for the LiVES application. No formal scientific

technique per-se was employed to derive this list – instead it was compiled by considering

several influences. These influences include - an analysis of the common features of existing

video applications; personal experience of the author; discussions with specialists;

communications with users (both individuals and groups); and some features which are

required to conform with the guidelines used35. The features selected are as follows:

• Playback at variable rates / reverse playback. The application must be able to play

video and audio at any desired rate, both forwards and in reverse, and have fast and

accurate random seeking. During playback, it should be able to switch instantly

between different video sources. This is a standard requirement of VJ applications.

• Real-time effects. The application would need to offer support for real time video

effects of various types: filters, mixers, and generators. This is a standard requirement

of VJ applications.

• Edit individual frames. It must be possible to review and export each individual

frame of any video clip which has been imported. This requirement is derived from

communications with users.

• Clip editor. The software should offer the ability to edit individual clips, providing

features like resizing frames, resampling (changing the video frame rate without

changing its duration), rotating the frames, and cutting and pasting of frames within

the same clip and between different clips. Features for editing the audio of a clip

should also be provided. This requirement arose from personal experience and from

communication with end users.

• Multitrack editor. The application should offer a multitrack interface, through which

35 Recall also that adhering to the Twin Peaks software development process, the requirements are adjusted
during the project development, based on a validation of the previous releases.

57

it should be possible to arrange imported clips using a timeline, apply effects and

video transitions, and then render the result as a new clip. This requirement came from

user requests36.

• Crash recovery. If the program crashes, then as far as possible the user should not

lose any of their work, and should be able to restart the application and continue from

a point before the crash occurred. This requirement comes from both the Human

Interface Guidelines (the user should never lose any data), and the requirements of VJs

that in the unlikely event of a failure during a performance, it must be possible to

recover the system as rapidly as possible.

• Wide range of input formats. The program should support as large a range as

possible of input sources, in terms of video formats. This requirement came from

personal experience and from user feedback.

• Range of high quality output formats. Support should be offered for as wide a range

as possible of encoded video outputs. Encoding should be done to a high level of

quality. This should include a range of free/open video formats. This requirement is

derived from personal experience.

• OSC support. The program should be controllable using the OSC messaging format,

which is becoming increasingly used for video applications. This requirement came

from conversations with other developers and with specialists.

• Ability to record performances. During real-time playback, the user should be

offered the option to record their performance – including such items as playback rate

changes, clip switches, real-time effects, and audio changes. After playback is

finished, the user should be able to render the recording as a new clip. This

requirement was developed from personal experience.

• Multiple monitor support. The application should support at least two monitors –

one for use as a “control” monitor, the second monitor as playback output. For

performances one or more of these monitors would actually be a projector. This

requirement came from personal experience, user requests37 and is a standard feature

36E.g. <https://sourceforge.net/p/lives/feature-requests/9/> (example of request for improvement to multitrack
mode)
37E.g. <https://sourceforge.net/p/lives/feature-requests/6/> (request for enhancement to Xinerama, i.e. Dual
monitor mode).

58

of VJ applications.

• MIDI / joystick control. It should be possible to control the application by means of a

MIDI controller. This includes the ability to map the various MIDI controls to

functions in the program as desired. The program ideally would also offer support for

control via a joystick or game controller. This requirement came from user requests38.

• Frei0r compatibility. The application should offer support for frei0r video effects

(Appendix A - Definitions), which is an extensive set of cross platform, free software

video plugins. This requirement arose from discussions with specialists, and the work

to implement it in LiVES was partly sponsored by LinuxFund39.

• Jack Audio integration. The application should allow integration with the Jack Audio

Toolkit (Appendix A - Definitions), since this is used commonly by multimedia artists.

The Jack framework also provides a transport function, which may be used to

synchronise the video with software music instruments. This requirement also came

about as a result of discussions with other developers and specialists.

• Audio plugins / filters. The software should provide the ability to use existing audio

plugins, for example, LADSPA (Appendix A – Definitions). This requirement arose

from discussions with specialists and via user requests.

• Firewire support. Supporting firewire (Appendix A – Definitions) is essential to

allow the application to import clips from a large range of video cameras. This need

arose from personal experience.

• TV Card / web-cam input. The program should provide features to allow direct

import of video material from TV cards and from web-cams which may be attached to

the machine. This feature may be used to capture material to be further processed, or it

may be used as a live performance source. This requirement was derived from user

requests and personal experience.

• Video for Linux (v4l2) or similar support. This feature allows the application to

masquerade as a web-cam itself, and thus enables its video output to be used as input

to other applications.(Appendix A – Definitions). This requirement arose from user

38E.g. <https://sourceforge.net/p/lives/feature-requests/47/> (request to add MIDI control)
39LINUXFUND project page for LiVES. Available at: <http://www.linuxfund.org/projects/lives/>. Accessed: 13
Jun. 2013.

59

requests and discussions with developers.

• Subtitles / captioning. The application should be able to load and display subtitles

and captions related to a video clip. This requirement comes from personal experience.

• Themes / GUI interface. The application should provide an easy to use and intuitive

interface for the user. This requirement comes from user requests and Human Interface

Guidelines.

5.2 NON-TECHNICAL REQUIRMENTS

Aside from the technical requirements listed above, such an ambitious piece of

software would need to be extremely feature complete, in order to be able to fulfill the

combined requirements of each of the areas of VJ application, video editing application, and

video processing environment. It should merge the functionality of at least a Resolume, a

Premiere and a Pure Data type application in one program. If it could provide additional

functionality, for example the ability to function as part of an online video editing system,

then this would be a bonus.

Such a program would need to be created with a very flexible internal framework. It

would need to be able to take video frames from any kind of source and to play them back in

any order desired, combine them and apply effects; either in response to real time events (key

presses and so on), or else in a predefined order via an event list. It would need to have a very

high level of performance to be able to respond to events and process them in real time. It

would be vital that it could play back video and audio smoothly. It would need a rich and well

defined remote interface to be able to act as a video programming environment. It should

support multiple platforms, and be able to scale itself automatically for a range of hardware

from low-end to high-end machines, since VJs work with a wide range of hardware, and

frequently they must work on equipment which is supplied to them at a venue.

In addition, such software would need to promote ease of use so that VJs can start

working with it straight away. The interface would need to be intuitive so that the main

features are easy to locate and to facilitate experimentation with different modalities: at the

same time it should allow for a full range of functionality and be feature rich to allow for

60

depth of experimentation and customisable use. The interface would need to be configured in

such a way that it exposes the functionality of the particular mode of working the user is

currently engaged in – real-time VJing, clip editing, multitrack video editing, data-flow

programming, scripting and so on. Customisation of the application through an extensive set

of preferences is desirable, since VJs work in different ways and for different purposes; thus

they should be able to configure the application to facilitate their own style and current needs.

The program would need to be extremely stable. During real-time playback this is a

must, since it may be used by a VJ for live performances, or via scripting as a tool for

installations, and hence may need to run unattended for long periods.

Ideally, such a program would also be Open Source, as this would allow for the system

to be customised rapidly and easily, and would allow for experimentation at the level of code,

and provide adaptability for unknown situations. Use of the Open Source model should also

result in a higher level of stability and feature completeness, since it opens the code base up to

a wide range of contributors. It would also provide the users with peace of mind, knowing that

the code will always be available, regardless of the success or failure of the developers. 40

Finally, the application should be available at zero cost to users, as this makes it

accessible to potentially all users, regardless of their financial situation. From personal

experience, it is known that many amateur VJs and video editors work unpaid, and so the

outlay to purchase a program for such use may be significant.

5.3 CHALLENGES

Apart from the need to have a large amount of technical knowledge, and the great

amount of effort involved in producing such a piece of software, there are some particular

areas of development which are particularly challenging:

– Internal framework design, in a way which unites effects, frames, events and data.

This requires knowledge of the manner in which both real-time and non-real-time

40A concrete example of this is the Netscape browser. Although Netscape, the company, no longer exists, the fact
that their browser was ultimately open source meant that it was able to be further developed, and eventually this
became the immensely popular browser, Firefox. [See also: MOZILLA history. Available at:
<http://www.mozilla.org/en-US/about/history/>. Accessed: 13 Jun. 2013.]

61

video applications function, as well as familiarity with technical details of video and

audio (video colourspaces, audio interleaving, etc.) and needs to be done in a flexible

and expansible fashion to allow for potential future developments

– Design and implementation of plugins. This again requires knowledge of video and

audio technology (for encoders and decoders one needs to know a great deal about

different video and audio codecs and container formats). In addition, the interfaces

between the host and plugins need careful thought and some element of trial and error

is involved.

– Design and implementation of a framework for automatically generating graphical

interfaces for plugin parameters. Having to design a complete graphical interface for

each plugin would add enormously to the plugin complexity and rapidly become

tedious. Nevertheless, plugins frequently have some parameters which must be

exposed graphically to the user. This needs to be done in a clear and consistent manner

in order to follow good interface design principles.

– Implementing the application in such a way that it does not compromise the security

of the system or of the user. For example, the user should not generally be able to

access the files of another (projects, clips and so on), unless the other user has

specifically allowed that. In addition, the developer must consider the possibility that

the application is being run by a system administrator (root, superuser, admin) and

prevent that user from inadvertently damaging the system. This is particularly

important for an application which is capable of being controlled remotely.

– Design and implementation of the graphical interface. This requires not only

consideration of human interface guidelines, but also intimate knowledge of graphical

toolkits, for example to be able to create custom widgets when necessary. Localisation

issues are also important to understand in this respect; for instance, how will the

direction of text (left to right or right to left) affect the layout of the interface ? If a

short label is required, what happens if a particular language translator translates the

text into a much longer word or phrase ?

– Refactorisation of the code will sometimes be necessary, to make it more

maintainable, reduce the complexity of the evolving code and so on. Thus the core

developer(s) will need an overall understanding of all areas of the code to carry this

62

out in a manner which does not cause bugs or problems.

– Optimisation of the code. A portion of the code needs to run in real time, so it is vital

to understand the intricacies involved here. In addition to the fact that code needs to be

highly optimised, multithreading may need to be employed - which in turn necessitates

knowledge of thread locking, shared memory and so forth.

– Design / rationalisation of the OSC interface. If a remote interface is to be provided to

the application using OSC, then the set of available messages needs to be designed to

be internally consistent. This results in making things like scripting easier to

understand and unambiguous, and provides a logical framework for extending the

message set to expose further functionality.

– Familiarity with hardware. The application will need to work with various peripherals

– cameras, soundcards, video cards and others. The developer(s) will need to

understand how these devices function at the hardware level, as this has an effect on

the way that the software is to be coded.

– Project activities not directly related to coding – documentation, maintenance of the

website, mailing list(s), forums, bug and feature request trackers. These are all part of

a good software project and offer indispensable support to the end user. These

channels of communication are particularly important for an Open Source project due

to the direct involvement of the user base within the development process.

63

6 LIVES

6.1 THE HISTORY OF LIVES

LiVES development began in late 2002. The author was inspired to start creating a

new video editing application after purchasing a new photo camera. In addition to taking

photos, the camera was able to record small clips of video; however for technological reasons,

the video clips were limited to a duration of just ten seconds. As well as the limitation in

duration, the clips were recorded without audio because of a lack of microphone on the

camera. The author decided that a means to increase the usefulness of the camera would be to

use a program to join together several of these ten second segments of video, and to add in

some audio – perhaps music or a commentary. Finally he hoped to be able to encode the

finished result. However there was a problem – the author was committed to using only

Linux, and at that time none of the applications available for that operating system could

import the camera's format. On the other hand, the author was able to use a different program

to actually play the video clips on Linux, although not to edit them. Since the player program

was able to output the frames as a sequence of images, the author had the idea of making a

simple editor to play the images in sequence and to edit the images, then to add sound, and

then to encode. Thus LiVES was born.

Right from the start, a decision was made to develop the program as Free Software. It

was hoped that in this way the author could contribute to the Linux ecosystem, and in return

could involve the programming community more fully in the development of LiVES.

Having satisfied his original needs, the author began consulting with the community

about how the program could be further developed. The principal channels for this were email

communications, mailing lists, and personal attendance at conferences and seminars such as

the Piksel Festival.

6.2 THE PHILOSOPHY OF LIVES

64

The application has always been developed as Free Software, using the GNU GPL for

the core code, and the LGPL for plugin libraries (to allow for the possible inclusion of

proprietary plugins). In addition to the benefits of being open source which were mentioned

earlier, the code base is open for any other GPL project to use. As proof of the contribution of

the LiVES code to the Free Software community, code for the threading model used for

LiVES real-time effects plugins has been copied and adapted by the developer of the Veejay

application for use in that program.

Further, the need for Free Software video editing applications is so important that the

Free Software Foundation (FSF) lists this as a priority area41 for Free Software development.

Finally, the fact that LiVES is open source means that the “many eyes” proposition

holds true for the code. As a vivid demonstration of this fact, the author received an email

from a Redhat developer advising of several systematic security flaws in the LiVES code

relating to interactions with the operating system. As a result, these flaws were removed by

rewriting a portion of the code, the end result being an application which is much more

secure.

The LiVES development process remains flexible, and attention is given to the

requests and suggestions of users. These are incorporated into the program whenever possible.

An example of this is support for web-cam and TV card input which was a popular feature

requested by several users. This feedback has helped LiVES to greater fulfill the needs of a

large segment of users.

6.3 THE LIVES COMMUNITY

Various community tools are available for Free Software projects and these are

leveraged extensively by the LiVES project. For example, the main website and copies of the

packaged source code are hosted on the Sourceforge site, which also provides the mailing

lists, bug and feature request trackers, and discussion forums, free of charge.

The code is developed principally for Linux. Each time a source code release is made,

volunteers from several Linux distributions are notified, and they generally go on to create a
41FREE SOFTWARE FOUNDATION, priority projects. Available at:
<http://www.fsf.org/campaigns/priority-projects/priority-projects/>. Accessed: 13 Jun. 2013.

65

package specific for that distribution, based on the generic source. In this way the package

distribution is done in a decentralized fashion.

LiVES is structured in such a way that all messages within the interface can be

translated and displayed as localized text. The tool used to do the translation is an element of

Ubuntu Launchpad. Translation42 is, again, carried out by teams of volunteers in a

decentralized manner. Owing to the volunteer efforts of the translation teams, the application

has been localised at least partially to thirty different languages, including some less common

ones such as Catalan, Estonian, Galician, Occitan and Uyghur.

For support, the main channels are the lives-users mailing list and discussion forums

on Sourceforge.

The pace of releases is fairly regular, in general there is approximately one release per

month. The current development code is always available for viewing and downloading since

it is hosted using Subversion, again on the Sourceforge site.

6.4 EQUIVALENT COMMERCIAL DEVELOPMENT

The software is developed rather informally, but to give an idea of the equivalent

development effort using proprietary and commercial methods, the site ohloh.com provides an

estimate based on the number of lines of code for a project.

According to the Ohloh site, which uses the Basic COCOMO43 model:

LiVES has 261,315 lines of code. This represents an estimated 69 person-years of
work. At an average programmer salary of $55,000 USD, the total development cost
for LiVES, if developed commercially would have been $3,777,981 USD.44

6.5 THE ARCHITECTURE OF LIVES

42LAUNCHPAD translation page for LiVES. Available at:
<https://translations.launchpad.net/lives/trunk/+pots/lives>. Accessed: 13 Jun. 2013.
43WIKIPEDIA, COCOMO. Available at: <http://en.wikipedia.org/wiki/COCOMO>. Accessed: 13 Jun. 2013.
44Estimated equivalent commercial cost for LiVES, ohloh.net. Available at:
<https://www.ohloh.net/p/lives/estimated_cost>. Accessed: 13 Jun. 2013.

66

6.5.1 Functional overview

Figure 17: Functional overview of the LiVES application

Source: Finch (2013)

67

Figure 17 shows the main functional elements of LiVES. Starting at the top left of the

diagram, we find clips (which are external to LiVES), which may actually refer to video,

audio, images or even remote streams. Depending on the source type and format for the clip,

the frames in it may be read when required by a decoder plugin (see below for a description

of the plugins). If no suitable decoder plugin is found, then a fall-back method is used which

decodes all of the frames at once and places them in the clip store. The clip store is a

directory on disk which contains an indexed collection of frames (stored as individual image

files), and audio (stored as raw PCM). In addition, each clip in the clip store has a meta-data

file which holds details such as the frame dimensions (height and width), frame rate, audio

rate and channels, and so on. Material from the clip store may also be passed to an encoder

plugin to produce an encoded clip. Clips which make use of a decoder plugin also have an

entry in the clip store; the contents are initially the meta-data file and decoded audio,

alongside an index which denotes which frames have been decoded to images, and which are

still within the source video clip. (That is to say, LiVES use a copy-on-write mechanism for

clips for which a decoder plugin can be found, in all other cases it uses a copy-on-read

mechanism).

Within the LiVES core, the clip editor interface can make use of the clip store and the

decoder plugins. The clip editor can also take frames and audio from the real time generator

plugins, as well as from web-cams and TV cards. This material can be played directly using

LiVES' internal player or any one of a number of playback plugins. Alternately, the material

may pass through one or more real-time effects before being displayed. Other courses of

action are available to the clip editor; clips can be altered using the rendered effect plugins,

or by the frame editor functions. In both these cases, the results are written back to the clip

store. In the case where a clip is using a decoder plugin, the plugin is used for reading, and

altered frames are written to the clip store. A further possibility in the clip editor is to record

real-time clip switches and effects, making use of the event recorder in LiVES. After

recording is complete, the recorded events may be sent to the renderer, which creates a new

entry in the clip store, and uses the events from the event recorder to create the clip.

Within LiVES, there is another interface which is the multitrack window. The

multitrack window also makes use of the clip store and decoder plugins as inputs; it uses the

same internal player and playback plugins as the clip editor, the same real-time effects

plugins, and it also makes use of the renderer. In this case, the events to be rendered come

68

from the timeline rather than from the event recorder.

Finally, on the right hand side of the diagram we have the OSC controller which can

control and manipulate both the clip editor and the multitrack interface. For example, in the

clip editor, it can be used to start and stop recording to the event recorder, to switch clips, to

activate or deactivate real-time effects, or to cut and paste between individual clips. In the

multitrack window, it can be used to insert blocks into the timeline. The MIDI/joystick

learner sits as a layer above this; once programmed, inputs from these devices are converted

to OSC messages and sent internally to the OSC receiver as if they had been received

externally as OSC. There is also an experimental web interface, which works with a web

server and communicates with LiVES using OSC messages.

Above (Figure 18), we see the clip editor interface for LiVES. The main part of the

GUI shows start and end frames for one particular video clip which has been loaded. The

optional separate playback window is shown in the foreground. Below the start and end

frames we see the single clip timeline. The video duration is represented as the top white bar

Figure 18: The clip editor interface in LiVES

Source: lives.sourceforge.net

69

and the two bars below this are the left and right audio channels. At the bottom of the screen

is the message area which keeps track of all the operations of the application.

The position of the start and end frames (which can be adjusted via keyboard, mouse

or OSC) defines the selection for the clip. The selection can be used for applying non real-

time effects (a.k.a rendered effects) and for cut/paste/insert/delete operations. The latter are

collectively referred to as the frame editor operations: they make use of the back end process,

since they interface directly with the clip store.

Multiple clips can be opened, and the user can switch between them in a variety of

ways – with the keyboard, mouse scroll wheel, from the Clips menu, via an OSC command,

via a configured MIDI controller or via a joystick.

During playback the visual configuration may change a little. If the separate window is

hidden, then playback will be shown in a window within the main interface. If the separate

window is shown, then playback will be performed in that window. In dual monitor mode, the

playback window can be set to switch to the second monitor automatically during playback.

In addition, the playback window may be set fullscreen.

Whilst the video is being played back, the user may switch clips, adjust the playback

rate and direction, freeze the playback, enable and disable real-time effects, adjust effect

parameters, and switch effect “banks”. All of this can be done in real-time, either through the

keyboard, a configured MIDI controller or joystick, or via OSC. The user can choose through

preferences whether the audio follows clip switches and rate changes or not.

The LiVES player is a variable rate playback engine. In normal playback mode,

timing information is taken from the soundcard – this is to ensure that video remains in

synchronisation with audio, which may play a little faster or slower than it should. If there is

no soundcard, or if video is being received from a streaming source, then the system clock is

used for timing instead, and audio is resampled on-the-fly to keep it synchronised with the

video. The player can also be synchronised by an external source – for example the transport

controller which is part of Jack audio, should the user set this through preferences. When a

frame is timed to play, the video frames are pulled from their various sources, effects are

applied, and the output is sent to whatever player output is active. The audio player runs in a

separate thread.

If desired, record mode can be enabled before or during playback (again via

70

keyboard, menu option or OSC message). The user can select through preferences which

events are recorded (real-time effects, clip switches and audio changes are optional; frame

changes and FPS – frames per second – speed changes are always recorded). Recording can

be toggled on and off during playback.

After playback, any events which were recorded can be previewed or rendered. If the

user chooses to render, then the event list which was recorded is sent to the renderer. The

purpose of the renderer is to take an event list (a description of frames, effects, effect

parameters, audio) and to render this as physical frames and audio. In doing so, this creates a

new clip (or optionally, overwrites part of the current clip).

Shown above (Figure 19) is the multitrack editor for LiVES. The user can switch

between clip edit and multitrack mode in a few ways – via the keyboard, using the mouse in

the menu bar, or via an OSC message.

The top left part of the screen is the preview window, which shows the frame at the

current cursor time. To the right of this is the “polymorph” window which attempts to show

Figure 19: The multitrack editor in LiVES

Source: lives.sourceforge.net

71

relevant information to the user (for example, when inserting clips in the timeline it shows

thumbnails of all the clips, when an effect is inserted it shows the parameters of the effect).

The lower part of the screen is the timeline. Generally below this is the same message window

which is shown in the clip editor mode, although in this case the timeline has expanded

because the user has expanded the backing audio track (shown in light green) to show its left

and right components. Here we see two video tracks (Video 1 and Video 2). Any number of

tracks may be inserted into the timeline. Clips can be dragged to the timeline, or inserted

using the keyboard, menu options, or via OSC.

In Figure 20 we see the audio mixer for the LiVES multitrack editor. Here one can set

overall levels for backing audio and for the individual track levels. [Within the multitrack

window itself, one can apply finer grained, time dependent adjustments to level and pan for

each track.]

The timeline in the multitrack editor is used to create an event list (similar to the event

Figure 20: The multitrack audio mixer in LiVES

Source: lives.sourceforge.net

72

list which is created in record mode during real-time playback). The event list can be viewed

in the event list viewer window, as the example in Figure 21 shows:

Figure 21: The event list viewer in LiVES

Source: lives.sourceforge.net

73

When the user chooses to render from the multitrack editor, the event list is passed to

the renderer, in the same manner that recorded events are handled. This process creates a new

clip, which is added to the clip store.

Above (Figure 22), we see the real-time effect mapper. Here real-time effects can be

mapped to various keys on the keyboard. Each key has a bank of effects which can be

selected in turn. Effects can also be mapped to virtual keys, which are accessible via OSC,

MIDI or joystick control.

Figure 22: The real-time effect mapper in LiVES

Source: lives.sourceforge.net

74

In Figure 23, we can see the data connector window. This is a recent addition to

LiVES. Here, output parameters from one effect can be connected to input parameters of a

second. During playback, if both effects are activated, then data will flow from the first to the

second.

The OSC controller (if enabled by a startup option, or via preferences) runs via a timer

which fires every 4 milliseconds. The controller checks to see if there is a message in its

queue, and if so will parse and handle the first message in that queue. OSC messages are

received generally via a UDP port. The MIDI/joystick controller can be configured via a user

interface to convert MIDI or joystick events into OSC style messages, which LiVES sends

internally to the OSC controller.

6.5.2 Technical overview

In terms of code, we can divide LiVES into the core application and plugins. The

Figure 23: The Data Connector in LiVES

Source: lives.sourceforge.net

75

core application consists mainly of the clip editor, multitrack interface, renderer, OSC listener,

internal player, and the graphical interface. The code here is not really modular since much of

it is common to several components. There is, however, a division here into client and server

components. The front end is written in C, and there is a back end component written in Perl

which is used mainly for interaction with the clip store and file system. In this way, the details

of the clip store are largely transparent to the front end. The back end is also employed as an

interface to transparently wrap other programs in the system, in the cases where these are used

(for example for fallback video decoding). Doxygen documentation for the front end portion

is available on the LiVES website45.

A recent initiative in the LiVES code is to abstract the low level details of the user

interface. LiVES currently uses the GTK+ toolkit, and this initiative originated shortly after

GTK+ version 3 was released. Prior to this, LiVES was built around GTK+ version 2, and the

new version introduced some backwards incompatible changes. Rather than stick with the

now deprecated GTK+ 2 code, or to migrate the code to GTK+ 3, a decision was made to

abstract the graphical interface. Rather than call the graphical code directly, an abstraction

layer was introduced, and within the abstraction layer all of the handling for the differing

versions of GTK+ takes place. The end result is that LiVES can now be compiled against

either GTK+2 or GTK+ 3, without requiring any further alterations to the code. This work is

still ongoing with the end goal being to allow LiVES to be compiled against any of several

graphical toolkits. A further exciting possibility would be to include integration with the

LiVES webserver, to generate the user interfaces automatically using HTML and JavaScript.

LiVES uses a custom library called “libweed” which implements the WEED (short for

Weed is an Effects and Events Driver) framework. Weed is an extremely flexible framework,

and is used extensively within LiVES and within many of its plugins (real-time effects, and

playback plugins).46

45DOXYGEN documentation for LiVES. Available at:
<http://lives.sourceforge.net/doxygen/LiVES/index.html>. Accessed: 13 Jun. 2013.

46 Several documents describe the Weed framework:
<http://lives.svn.sourceforge.net/viewvc/lives/trunk/weed-docs/weedspec.txt>
<http://lives.svn.sourceforge.net/viewvc/lives/trunk/weed-docs/weedaudio.txt>
<http://lives.svn.sourceforge.net/viewvc/lives/trunk/weed-docs/weedevents.txt>
<http://lives.svn.sourceforge.net/viewvc/lives/trunk/weed-docs/weed-utils.txt>
<http://lives.svn.sourceforge.net/viewvc/lives/trunk/weed-docs/weed-plugin-utils.txt>
<http://lives.sourceforge.net/doxygen/libweed/index.html>

76

6.5.3 Plugins

LiVES also makes use of several types of plugin. The advantages of using plugins are

discussed by (CHATLEY; EISENBACH; MAGEE) and others, e.g. (MAYER; MELZER;

SCHWEIGGERT, 2002). The types of plugins used in LiVES are described briefly here.

• Decoder plugins

Decoder plugins may be written in C or C++. The goal of these is to retrieve metadata

from a video clip if possible, and if this succeeds, to return a decoded version of a specified

frame from that clip. The interface is very simple, consisting of just a handful of mandatory

function calls: a function to get the plugin version, another to get clip metadata, and another to

pull a frame from a clip. This latter function has two requirements – it must return exactly the

frame requested, and it must be done as rapidly as possible. To ensure this, various methods

are employed, such as indexing the positions of keyframes47 in an internal list. Other optional

functions include a function to decode audio from the clip.

• Encoder plugins

Somewhat the counterpart of decoder plugins are encoder plugins. The objective here

is to take a sequence of images from the clip store (possibly with accompanying PCM audio),

and produce a new clip. Encoder plugins are binaries and may be written in any language –

the plugin simply needs to parse its commandline options and follow a few simple rules. In

fact there are encoder plugins written in both Perl and Python.

• Rendered effect plugins

Rendered effect plugins are used in the clip editor component of LiVES. There are

four types of rendered effect plugins: batch generators, non-batch generators, filters, and

transitions. Batch generators are used to generate a batch of frames in one go, these frames are

then imported into LiVES via the clip store. Non-batch generators generate frames one by

one. Filters take one frame input, apply some effect, and produce one frame output.

47 For many compressed video formats, full information for each frame is not stored in the video file. The
decoder must begin by decoding from a keyframe, and then continue decoding frames sequentially until the
target frame is reached.

77

Transitions take frames from two different clips in the clip store and combine them into one

frame. Rendered effect plugins need not run in real-time; thus the effects they produce can be

as complex and processor intensive as desired. These types of plugins are generated from

special script files. Within the LiVES application there is a tool to help create and modify

these scripts. The scripts are compiled into Perl applications (although in future they could be

compiled into other languages), which are the actual plugins themselves.48

• Real time effect plugins

The goal of real time effect plugins is to apply an effect in a very short period of time.

This type of plugin may be written in C or C++ (examples exist of both). They are used within

the clip editor and within the multitrack interface in LiVES. Real-time effect plugins make

use of the Weed architecture mentioned earlier. There is a huge variety of real time effect

plugins depending on the number of frames input (zero, one, two, or multiple), the number of

frames output (zero or one), and whether or not they produce data output. Some of these

plugins also handle audio rather than video channels. A number of them are actually wrappers

for other effect frameworks. Real time effect generators are a specific type of this plugin,

which have no input video channels, but do have output video channels.

• Compound effect plugins

These are really a type of pseudo plugin; they consist of references to a set of real-time

plugins to be run in sequence as a single unit, along with details of data connections between

the internal parts. They may also set specific defaults for some of these internal plugins,

hiding those parameters from the user. To the user then, the plugin appears as one effect rather

than multiple. An example of this is the image stabilizer plugin in LiVES which consists of

component plugins which analyse the motion between subsequent images in the video stream,

a plugin to average the motion over the entire frame, a plugin to handle these values

parametrically, and another plugin to shift the frame vertically and horizontally. The user

could set this up themselves as separate plugins and then save this as a patch, but it is more

convenient to have it ready made as a single unit.

• Playback plugins

This type of plugin is used to replace the LiVES internal display plugin, but they are

48 The script format is described in the document: <http://svn.code.sf.net/p/lives/code/trunk/RFX/RFX.spec>

78

only active when LiVES is playing back in a certain mode (fullscreen and in a separate

window). These plugins are written in C or C++. They are created for specific output

purposes, for example optimised playback or streaming.

Some of these plugin formats are described in section 17.3.3 of the LiVES manual49.

The use of plugins in LiVES has allowed other developers to participate in advancing

the project. For example, the openGL playback plugins were created by another developer,

and some of the encoder plugins were developed by a third.

6.5.4 Optimisations, concurrency

Parallel processing is used in some areas of the code where this would result in

performance improvements, for instance in some of the real-time effects, and some

colourspace conversions. Some considerations regarding the use of parallelisation of video

effects have been discussed by Mayer-Patel (1999). The core of the LiVES code is not

optimised for any particular hardware – instead this is achieved through using external

libraries and plugins. The idea here is to make the core code as portable as possible.

It should be noted that the LiVES code is completely concurrent - meaning that

multiple copies of the application can be run in parallel on the same machine by the same or

different users without problems.

6.5.5 Language breakdown

Table 4 shows the lines of code per language which have been developed for the

LiVES application.

49FINCH, G. LiVES manual, plugin formats. Available at:
<http://lives.sourceforge.net/manual/LiVES_manual.html#section17.3.3>. Accessed: 13 Jun. 2013.

79

Table 4: Language breakdown for the LiVES application.

Language Code Lines
Comment

Lines
Comment

Ratio
Blank
Lines

Total
Lines

Total
Percentage

 C 223,613 18,884 7.8% 64,519 307,016 84.4%
 Perl 13,789 1,399 9.2% 4,041 19,229 5.3%
 shell script 8,060 1,319 14.1% 637 10,016 2.8%
 Python 6,970 4,762 40.6% 2,639 14,371 4.0%
 C++ 3,132 856 21.5% 1,421 5,409 1.5%
 HTML 2,410 0 0.0% 0 2,410 0.7%
 Automake 1,317 89 6.3% 478 1,884 0.5%
 Autoconf 1,259 176 12.3% 444 1,879 0.5%
 Java 708 323 31.3% 216 1,247 0.3%
 Make 57 18 24.0% 21 96 0.0%

Totals 261,315 27,826 74,416 363,557

 Source: https://www.ohloh.net/p/lives/analyses/latest/languages_summary

6.6 UNIQUE FEATURES

LiVES, in addition, has some unique features for an application of its type. These

unique features make LiVES into a more powerful and useful tool, allowing greater flexibility

in its use. Furthermore, these unique features provide enhanced possibilities for

experimentation and novel ways of interacting with the application. Some examples of these

unique features are:

• The possibility of editing recorded performances

Whilst a number of VJ applications offer some kind of ability to record performances

in real-time, LiVES takes this to another level, by enabling the user to edit their performance

after it has been recorded. This is due to the fact that LiVES makes use of the same structure

internally both for performance recording, and for the multitrack editor. After the user has

recorded something, and playback has finished, one of the options offered (in addition to

previewing and rendering) is to open the recording in the multitrack window. The idea here is

to give the user the opportunity to make fine adjustments and to perform other editing tasks

80

prior to rendering and encoding whatever was recorded. This feature enables interesting and

novel workflows – the user can record in real time in a very expressive way, and yet, still

retain the ability to make precise adjustments to the recorded results. Whilst this feature was

initially introduced as an experimental option in LiVES, it is now quite stable and maturing to

the point where it can be offered as a mainstream option.

• Signal/data processing

This is a relatively recent feature of LiVES, and is one which is traditionally found

only in video programming environments. Certain real-time plugins distributed with LiVES

can now operate on various types of data – either by analysing video or audio which is fed in

to them (for example, motion detector, Fourier analyser), processing data (for example, the

data processor plugin), or acting on data (for example, the Vector Visualiser plugin). There is

also an interface for creating data connections between plugins, so that the data output of one

plugin may be fed automatically into the input of another. There is also support for compound

plugins, where various constituent plugins act as a single unit, with data passed internally

between them. Several types of variable are supported: boolean, integer, float (double), and

string. Variable types are converted automatically (for instance a boolean can be converted to

a string with value “0” or “1”). List type variables are also handled, and there is support for 2

dimensional arrays of floats (these are treated as alpha channels). In addition, variables from

audio and video filters can be connected together, which allows for greater expressiveness by

the user.

• Support for many types of third-party plugins via its extremely flexible plugin

system (LADSPA, frei0r and libvisual)

LiVES uses an extremely flexible framework, WEED, for real-time effects plugins.

Via use of wrapper plugins, it is possible for LiVES to support many other types of plugin

without changing them. Using this framework, LiVES will support frei0r video effects,

libvisual50 video generators, and LADSPA audio plugins out of the box. Support for

Freeframe, another free plugin framework was considered, and adding this would be possible

– however Freeframe supports only 32 bit pointers, and a requirement of LiVES code is that it
50LIBVISUAL website. Available at: <http://libvisual.org/>. Accessed: 13 Jun. 2013.

81

work equally well on 64 and 32 bit systems.

• OSC control for video editing

Whilst it is fairly common for VJ applications to include support for OSC control

methods, LiVES in addition can make use of it for purely video editing tasks. For example,

via OSC, one can send messages like:

/mt/ctrack/set 1 [set the current timeline track to 1]
/block/insert 5 [insert currently selected frames from clip 5]

The set of OSC commands for video editing is currently quite small, but can be easily

expanded should further need arise.

• Bi-directional OSC

An increasing number of tools in the video space make use of the OSC protocol for

control purposes. LiVES takes this one step further and provides bi-directional OSC. For

example, an OSC message can be sent to LiVES asking for the number of clips loaded, and

LiVES will respond on another, user defined port with the information requested. This enables

not just control of the application via OSC, but in fact it is possible to discover the entire state

of the application. This allows for far more complex scripts to control LiVES, and a remote

application controlling LiVES could present this information graphically using any interface

desired. A third port can be used as a listening port; if this is enabled then LiVES will send

notification when certain pre-defined events occur, for example when a clip is opened or

closed. Responses and notifications are sent as plain text, so a receiving program does need to

understand the OSC protocol for parsing responses.

To illustrate this, here is a small set of OSC messages to obtain some data from

LiVES.

/lives/open_status_socket 49998 [open a status socket on UDP port 499998]

/lives/ping [LiVES will return “pong” on port 49998]

/clip/count [LiVES will return the number of clips open]

82

/effect_key/parameter/value/get 7 5 2 [get the value of the third element of the

 sixth parameter of the currently active

 effect bound to keyslot 7]

• Flexible and extensible support for external device support (MIDI/joystick

mapper)

The LiVES code makes it a fairly simple task to add new controller type devices

whenever such a need may arise. In functional terms, the process as currently implemented

works as follows:

– the user activates the MIDI interface on the machine, or connects a joystick

– the user enters the MIDI/joystick learner interface window, via a menu option

– the user touches a MIDI control, or moves the joystick or presses a button

– the interface shows what has been altered (e.g. MIDI controller 12, joystick axis 2)

– the user can select an event type to link this to, for example “Set playback ratio”

– after connecting the controls that the user wishes to uses, the mapping can be saved as

a “Device map”. This map may be reloaded at startup time, or later during program

execution.

– when the user repeats the action which was “learned”, the appropriate message is

constructed and sent internally by LiVES to the OSC controller. The variable part of

the control is converted to a variable part of the OSC message. For example, if the

user connects a joystick axis to a command, then the axis value is used as a parameter

to construct the OSC message.

Internally, what occurs is the following. Each 4 milliseconds, the program checks all

device sources to see if there is a message. If there is, then a string of numbers separated by

spaces is constructed. The first number is a “magic number” for the device type; e.g. 1 for

MIDI, 2 for joystick. The second number is the sub-entry within that device, so for MIDI it

might be 1 for controller, 2 for key press, for joystick it might be 1 for axis, 2 for button, and

so forth. The third number is the index for that device and sub-entry – so for joystick, button,

83

we would use a value of 0 to represent button 0. The next numbers represent the variable part

in the device, so for a joystick button, 1 might be press, 0 might be release. For a MIDI

control, it would contain the controller values.

Once we have constructed this string, LiVES does a lockup in an internal table to see

if the initial portion of the string matches a message type set by the user. If so, then an

appropriate OSC style message is constructed, with the variable parts of the string replacing

the variables in the OSC message, which is then sent. LiVES is programmed with the

minimum and maximum values for the device controls, and also knows the minimum and

maximum values of some of the OSC messages, such as when setting an effect parameter

value, so in some cases automatic scaling of the values can be done. In other cases, the user

can enter scaling values and offsets for the device input when setting up the mapping.

One nice feature of this method is that the user can select whether a value is constant

or variable. Imagine we are generating a string for joystick button 0 press. The string might

look something like “1 1 0 1”, where the first “1” represents joystick, the second “1”

represents button, the “0” is the index of the button, and the final “1” represents “press”. The

user can define all of this as constant – so that pressing joystick button 0 would trigger a

command with no variable parameters; releasing the button would generate “1 1 0 0” which

could be mapped to a different command. Alternately, the user could make the last value a

variable, so that pressing joystick button 0 would produce a variable with value 1 or 0

depending on whether the button was pressed or released, and hence could be mapped to a

command with one parameter. Internally, the difference is that in the first case we can have

two entries in our look-up table: “1 1 0 1” and “1 1 0 0”. In the second case we would have “1

1 0” instead. This is the motivation for using strings – when a device change is converted to a

string, we only try to match an entry in the table with the initial portion of the string –

everything else in the string becomes a variable.

This makes is it fairly easy to add new devices in future to LiVES. All we require is:

– add a new magic number for the device

– enumerate subtypes for that device (“controller”, “key”, “button”, “axis”, etc) and the

default number of constants for each sub-type (e.g. 1 for controllers – the index

number, 2 for buttons – index number and press/release state)

84

– set minimum and maximum values for variables for the sub-type (if known), to allow

for auto scaling

– some sub-type/index combinations are exceptional – for example a MIDI controller

with a certain index number is actually “program change”, so this has a special display

name (and possibly different minimum/maximum values and number of parameters).

These exceptions need to be defined.

– devise a means to convert the device changes to a string “x y z....”, where x is the

magic number, y is the sub-type, and z is the index value. Everything else follows as

parameter values.

LiVES will handle all of the rest, using existing code.

• Ability to run in “headless” mode

Another fairly unique feature in LiVES is the ability to run in “headless” mode; that is,

without using any attached video monitor. For example, one can run LiVES without a user

interface and send the output video as a stream to a remote machine. Combining this with

OSC control turns LiVES into a true video server. Whilst this feature does exist in some other

VJ applications (Veejay for example), and certainly so for video programming environments,

LiVES is unique in extending this feature to the range of processing operations which can be

carried out whilst operating in this mode. One can perform sequential clip editing operations

and lay out an entire multitrack timeline for rendering.

• HTML/JavaScript interface

Taking the video server idea a step further, LiVES has an experimental webserver

interface. The interface operates via a webserver on the local (or another) machine, and

HTML/JavaScript served to client machines. A small PHP script running in the webserver can

be used to send and receive OSC messages to and from LiVES, which are then handled by

JavaScript functions in the client browser. In this way, it is possible to use LiVES as an online

video editing application. Previews of the video being edited are streamed from LiVES back

to the client via the webserver. Each client may have its own copy of LiVES running, which

uses a unique set of ports for OSC communication. The LiVES instances may connect to the

85

same clip store (for collaborative editing), or else they may have a sandboxed clip store. This

idea is still in the prototype phase (due to lack of development time), but a single client

version running over the internet has been demonstrated.

The diagram below (Figure 24) represents a theoretical setup for this.

86

Figure 24: LiVES setup for an online video editing system

Source: Finch (2013)

87

Shown above (Figure 25) is the information page from the LiVES online demo. OSC

messages are sent to query LiVES about its current state. The results are formatted and

displayed to the end user.

In clip edit mode within the online demo (Figure 26), OSC is used to get the current

clip index number, and the start and end frame numbers for the current clip. OSC commands

are sent which cause LiVES to create thumbnails for for the first and last frames, and

representative frames for all other clips. The thumbnails are transmitted to the user via the

Figure 25: LiVES online demo: information
page

Source: lives.sourceforge.net

Figure 26: LiVES online demo: clip edit
mode

Source: lives.sourceforge.net

88

webserver. Clicking on the spinbuttons for start and end frames, or clicking to select a

different clip sends an appropriate OSC message to LiVES. Hovering the mouse over a clip

thumbnail shows information about that clip. Since this is a demo, it is not possible to edit the

clips here, but in theory this could be implemented using existing OSC messages.

Clicking on Play sends an OSC message which causes LiVES to start streaming the

currently selected clip using a playback plugin. The webserver forwards the stream to the user

who views it using a JavaScript player (Figure 27).

Part of the demo shows the multitrack editor implemented online (Figure 28). A square

in the lower area is highlighted in blue. Clicking on a clip thumbnail in the upper area causes

Figure 27: LiVES online demo: streaming
preview player

Source: lives.sourceforge.net

Figure 28: LiVES online demo: multitrack
mode

Source: lives.sourceforge.net

89

that clip to be inserted into the layout via an OSC message. A transition is automatically

inserted between adjacent clips in the red square. The transition causes one clip to fade

smoothly into the next clip. Clicking on a Play button sends an OSC message for LiVES to

start playing a preview, via a streaming playback plugin (exactly as is done in the clip editor).

This is a very simplified variant of the multitrack editor in LiVES available through the GUI,

designed as a simple proof of concept. The demo could be extended in various ways – clip

editing and effects could be added in the browser interface, a more advanced multitrack editor

could be constructed, and the user could be provided with a means to render and encode a clip

ready for download. This is limited only by the range of OSC messages available in LiVES,

which is already very extensive.

In addition to this, the system could allow collaborative online editing – whereby a

group of users, perhaps separated geographically, could work together to edit the same

material. Each would have access to a combined clip store, and a combined set of layouts for

the multitrack editor.

90

7 RESULTS AND VALIDATION

Here we discuss the results of the validation which was carried out in order to

determine whether or not LiVES is achieving our aim of meeting the demands of

Experimental VJs.

7.1 VALIDATION OF TECHNICAL FEATURES

In response to the questionnaire asking about which features of a video application

were important, fifteen replies were received during the time allotted for this, and the results

have been collated below in Table 5. Due to the relatively small number of responses received

in comparison to the estimated number of LiVES users, these results are not intended to

provide any type of formal statistical analysis, but simply to confirm to some extent that the

list of features derived earlier matches with the requirements of this set of users and potential

users, and to get some idea of the relative ranking of those features amongst the small sample.

It may be noted that none of the respondents selected “Data Connections” as being an

important feature. Whilst this is traditionally a feature found in video programming

environments, the lack of response may well be due to the fact that this feature is a very recent

addition to LiVES and is as yet undocumented. It may also be observed that none of the

respondents selected “Local Language Support”. In this case, this result may be due to the fact

that the questionnaire was published only in English (which is the default language of the

application, mailing list and website). Thus foreign language speakers who may consider this

important may have been inadvertently excluded from the survey. These areas may be of

interest for further investigation.

91

Table 5: List of features considered important in a video application, in order of popularity.

Linux Support 13

Real-time Effects 11

Stability 10

Ease of Use 9

Level of Support 6

Ability to Edit Individual Frames 6

Frei0r Compatibility 6

Jack Audio Integration 6

Crash Recovery 5

OSC Support 4

MIDI/Joystick Interface 4

Wide Range of Input Formats 4

Range/Quality of Output Formats 4

Control of Playback at Various Rates 4

Clip Editing Features 4

Price 3

Accessibility of Code 3

Web-cam/TV Card Input 3

Ability to Record Real-time Performances 3

v4l2 Compatibility 3

Multi Monitor Support 3

Multitrack Editing 3

Frequency of Releases/Bug-fixes 2

Fire-wire Inputs 2

Audio Plugins 2

Subtitle Support 2

Themes/Appearance 2

Source: Finch (2013)

92

Figure 29: Popularity of various features in LiVES

Source: Finch (2013)

Linux support

Realtim
e effects

Stability

Ease of use

Level of support

Ability to edit indivi dual fram
es

Frei0r com
patibility

Jack audio integrat ion

Crash recovery

OSC control

M
IDI/joystick interf ace

W
ide range of input form

ats

Range/quality of ou tput form
ats

Control of playback at different rates

Clip editing features

Price

Accessibility of cod e

W
ebcam

/TV card in put

Ability to record rea ltim
e perform

ance s

v4l2 com
patibility

M
ulti m

onitor suppo rt

M
ultitrack editing

Frequency of releas es / bugfixes

Firewire input

Audio plugins

Subtitle support

Them
es / appearan ce

Data connections

Local language sup port

0

2

4

6

8

10

12

14

93

With regard to non-specific technical features, it should be noted that ten of the

respondents (66% of the sample) mentioned “stability”, whilst nine (60%) mentioned “ease of

use / user friendliness”. Six of the respondents (40% of the sample) stated that “Level of

Support” was important to them. Two of the users (13% of the sample) said that “Frequency

of releases/bug fixes” was important.

Some of the applications come close to meeting all of the users' most important needs

– in particular, Veejay and Pure Data. Both of these are feature rich applications – however,

Veejay lacks extensive input and encoding options, and does not provide the multitrack

composition features which 20% of the respondents required. Pure Data also satisfies many of

the requirements; however due to the complexity of the interface and the time needed to learn

it, it does not satisfy particularly well the requirement of “ease of use”.

Comparing the feature list of LiVES51 with the list of technical requirements (which

has been reproduced below from the current LiVES website), we can see that LiVES satisfies

all of them. (Items marked in bold represent matches with the requirements list.)

Platform

• Stable and well tested core.
• Fully cross platform for GNU/Linux and many flavours of Unix (e.g. BSD,

openMosix, IRIX, OSX/Darwin, Solaris).
• Runs on at least x86, amd64, ppc and xbox/x86.
• The LiVES audio/video platform is custom extendable through RFX plugins.
• Allows quick and easy prototyping of new tools, utilities, effects, transitions,

generators and more, using the included RFX builder window.
• Plugins can be written in Perl, C, C++, python, or any other language, allowing O/S

level access to individual frames within clips.
• Will scale for high/low end hardware. Can be split into client/server components.
• Control every function in LiVES remotely using OSC protocol.
• Packages for most major GNU/Linux distributions: Ubuntu, Mandriva, Gentoo,

Debian, Suse, Fedora Core, Rock Linux, Source Mage, Alt Linux, Frugalware and
Dynebolic.

• 100% original, non-proprietary code.

Video

• Loading and editing of almost any video format
• Some formats can be opened instantly using decoder plugins (e.g. webm, wmv, flv, dv

51FINCH, G. LiVES feature list. Available at: <http://lives.sourceforge.net/index.php?do=features>. Accessed: 13
Jun. 2013.

94

and ogg/theora).
• Smooth playback at variable frame rates, forward and in reverse. Display

framerate can be controlled independently of playback framerate.
• Frame accurate cutting and pasting within and between clips.
• Saving/re-encoding of clips, selections, and individual frames.
• Lossless backup/restore.
• Streaming input and output.
• Support for live firewire cameras and TV cards
• Real time blending of clips (various chroma and luma blends).
• Can handle in/out streams in LiVES to LiVES or yuv4mpeg format. Streams can be

piped from stdout into other applications.
• Supports fixed and variable framerates. Playback rate can be smoothly adjusted

independent of display rate.
• Ability to 'scratch' with video - that is to move smoothly backwards and forwards

through it, and to record yourself doing so.
• Playback can use LiVES' own internal player, there is also a high performance

fullscreen SDL playback plugin, and a new openGL playback plugin
• Internal support for RGB24, RGBA32, YUVA, YUV, YUV422, YUV420 (jpeg and

mpeg), YUYV, YUV411, and UYVY palettes; one step conversion with chroma super
and subsampling is implemented.

• Clamped and unclamped YUV is supported.
• Ability to edit many filetypes and sources including remotely located files (with

mplayer/ffmpeg libraries), and directories of images.
• Real time capture/recording of interactive (via mouseclicks) external windows.
• Encode to any of the 50+ output formats which are now supported (e.g. mjpeg,

mpeg4, mpeg1/2, h264, VCD, SVCD, DVD, ogg/mp4 ogm, Matroska mkv, dv, swf,
Ogg Theora, Dirac, MNG, Snow, xvid, and even animated GIF and PDF!)

• Encoder formats can easily be extended through the encoder plugin API.
• LiVES will suggest the best settings for saving to each format.
• Resampling of video (time stretching) to any frame rate (1 to 200 fps - accurate to 8

decimal places); option to auto-resample or speed up/slow down between clips.
• Ability to instantly alter the playback speed of video and audio independently.
• Rotation, resizing and trimming of video clips.
• Deinterlacing, subtitle removal. Auto deinterlacing for dv can be enabled.
• Instant saving/loading of clips for performances/presentations.

Audio

• Can load mp3, vorbis, mod, it, xm and wav files.
• LiVES can also load tracks directly off CD to use with your video (using cdda2wav).
• Ability to save audio selections, and append audio.
• Sound can be trimmed to fit video selections.
• Sample accurate cutting and pasting of audio within and between clips.
• Resampling of audio (rate, channels, sample size, signedness and endianness); audio is

auto-resampled between clips.

95

• Supports (auto)inserting of silence and deletion of audio sections.
• Able to record from any external audio source.
• Fade in/fade out feature for clips.
• Audio speed and direction can be smoothly adjusted; both in real time and when

rendering.
• Support for LADSPA audio plugins.

Effects/Transitions

• Many effects, including random/targeted zooming, panning of video, colour cycling
and colorisation/colour filtering.

• Merging/compositing of frames is possible: e.g. frame-in-frame, fade in/out and
transparency.

• Real time previews as the effect is processing.
• Support for the Frei0r effect plugin architecture (via a wrapper) which will allow

sharing of real-time effects with other applications.
• Use real time effects to blend clips together, regardless of frame size or fps. Luma and

chroma blending are currently supported.
• Multiple real time effects are possible during playback (VJ mode), these can also

be rendered to frames.
• Effects and transitions are now fully customisable using the RFX builder window.
• Effects/blends can also be applied to incoming streams in real time.
• Dynamic loading of effects.

Multitrack

• Multitrack window with drag and drop
• Intelligent screen organisation - shows you only the information which is relevant, no

more and no less
• Support for an almost limitless number of tracks and effects
• Rapid rendering - resize/resample and effects apply done in a single pass
• Tracks can be laid out entirely with keyboard, or with mouse, or a combination of both
• Multitrack settings can be targeted for a specific encoder, or generic
• Layouts can be saved and reloaded
• Audio blocks can be timestretched and even reversed
• Non-destructive editing, with multiple levels of undo/redo.
• Full automation of effect parameters.
• Any number of layers can be composited together into a single layer.
• Support for stereo backing audio track + stereo audio track per video track
• Automatic gain control
• real-time mixing/previewing of audio
• Channel mixer volume control + fine grained, time variable per-channel volume and

pan control.
• Auto-transitioning of audio with video.

96

Extras

• Full crash recovery.
• Configurable multi-monitor screen placement.
• Simple and intuitive menu layout.
• Remote monitoring of the application can be enabled
• VJ functions can be controlled via keyboard, joystick or MIDI controller
• I18N text support. Translations into French, Czech, German, Japanese, Dutch,

Portuguese, Spanish, Italian, Russian, Turkish, Hungarian, Slovak, Simplified Chinese,
Finnish, Brazilian Portuguese, Ukrainian, Uzbek, Polish, Uyghur, Catalan, Galician,
Romanian, Estonian, Telugu and Hebrew are included.

• Pulse audio support.
• Support for audio output through jack.
• Jack transport support (master or client)
• Support for .srt and .sub subtitle formats.
• Import tool for importing clips directly from YouTube.
• Full integration with upcoming videojack standard (work in progress)
• RFX builder allows rapid prototyping of new effects, transitions, generators, utilities

and tools. Custom RFX scripts can be exported to share with others or downloaded
and imported. Test scripts are run in a sandbox to allow safe testing of new plugins.

• Midi sequence synchronisation (start/stop).
• Can load single images or directories of images in numerical order and assemble them

into videos or slideshows.
• Ability to play music through xmms (including random selection of tracks).
• Shuttle controls for firewire cameras/recorders. Can grab from DV and HDV

formats.
• Can stream out (on stdout) using yuv4mpeg format.
• Can play back through a vloopback device (Linux only).
• Project files (clips and layouts) can be exported and imported
• Toys!

GUI

• Based on gtk+ 2.16+, runs under KDE, Gnome, Metacity, Fluxbox, Compiz and any
known window manager.

• Several built in themes/skins available (see screenshots). Custom themes will be

supported soon.

7.1.1 Qualitative responses

In addition to the survey, a few users were interviewed and asked to provide example

97

use-cases based on what they do with video. These types of use cases are important in order to

better comprehend the combinations of features which a typical user might employ in their

workflow. Such understanding is valuable in order to simplify these workflows and to help

ensure that all of the steps contained in them are available within the application.

Furthermore, a paper published by IBM (Use Cases, Best Practices, 2003) states:

Functional requirements are typically written from the point of view of the software,

but use cases are written from the 'voice of the customer.' This expression, which

comes from the quality movement, refers to discovering the stated and unstated

requirements of product customers and users. Building a software product without

understanding their needs is a sure path to failure. Use cases are arguably the best

requirements technique we have for describing 'the voice of the customer' in software

products.

• Use Case 1

One user outlines his need “to be able to save a 30 second video (created with a

camera) and be able to review it frame by frame with another piece of software.”

The features required for this task include:

– Import video from a camera (either via firewire or by decoding the video saved on

disk)

– Shuttle control of the camera (possibly) to locate the desired segment

– The ability to review the selected clip frame by frame

– The ability to save a selected frame as an image format, in order to allow it to be

imported into an external application for further processing

• Use Case 2

Another states: “I need a full featured, but easy to operate, open source video editor

that I could adapt to accept my new camera's slightly funky video format.”

This user mentions other features:

98

– feature completeness

– ease of use / user-friendliness

– open source code

– adaptability of the code

– variety of input formats to handle many types of camera input

• Use Case 3

A third user provided the use-case: “...improvise with live video, like randomly

switching clips with music, add some effects and record the improvisation to a new clip.” The

features involved here are:

– real time playback

– real time effects

– real time performance recording of video, audio and effects and clip switches

– rendering of the performance to a new clip

– (possibly) followed by encoding of the new clip

Note that whilst each of these tasks could be handled separately by one or more of the

programs mentioned in Chapter 2, there is no one program there which could handle all of

these use cases together. If these use cases were the only requirement for that user then

depending on the task in hand, they could possibly use one of the programs above. However,

if they had other requirements in addition to the use cases mentioned, then they would quite

possibly need to use a second or a third application to complete all of their tasks. LiVES is the

only tool which can cover all of these use cases and more.

Fourteen of the participants responded to the question asking which features of LiVES

they found important. If we examine only the specific technical features, we can divide these

up roughly into features commonly found in video programming environments, video editing

applications, and VJ applications. The responses are shown in Table 6 below:

99

Table 6: Cross reference of LiVES features

VPE VIDEO EDITOR VJ APPLICATION

OS
C

AR M
E

SS EF F
W

CE IF OF VR RE TV AP FC V4 MJ M
M

JA

* * * * *

* *

* * * * * * * * * *

* * * * * * * *

* *

* * * * * *

* * * *

* *

* * * * *

* * * * * * * * * *

* * *

* * * * * * *

* * *

* * * * * * * *

Source: Finch (2013)

As can be seen, there is a lot of overlap between the three application areas – in most

cases the respondents marked features in two or more application areas, and in four cases they

marked features from all three application areas. If this is a representative sample of all

LiVES users, then this would suggest that the LiVES application is fulfilling a unique role

for the majority of users.

100

Table 7: Key for Table 6

VPE Video Programming Environment

OSC OSC support

RP Ability to record performances ME Multitrack editor

SS Subtitle support EF Edit individual frames

FW Firewire support CE Clip editor

IF Wide range of input formats OF Range/quality of output formats

VR Playback at variable rates RE Real-time effects

TV TV card / webcam support AP Audio plugins

FC Frei0r compatibility V4 Video for Linux support

MJ MIDI/ Joystick support MM Multi-monitor

JA Jack audio integration

Source: Finch (2013)

7.2 VALIDATION OF NON-SPECIFIC REQUIREMENTS

The user ratings for non-specific features were collated and are show in the charts

below (Figures 30 – 34).

101

Figure 30: User Friendliness rating for LiVES

Source: Finch (2013)

1 2 3 4 5
0

1

2

3

4

5

6

User Friendliness (x axis) versus no. of respondents (y axis)

Figure 31: Stability rating for LiVES

Source: Finch (2013)

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Stability(x axis) versus no. of respondents (y axis)

102

Figure 32: Feature Completeness rating for LiVES

Source: Finch (2013)

Figure 33: Performance rating for LiVES

Source: Finch (2013)

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Performance (x axis) versus no. of respondents (y axis)

1 2 3 4 5
0

1

2

3

4

5

6

7

Feature Completeness (x axis) versus no. of respondents (y axis)

103

As can be seen, according to the results received, LiVES was rated well above average

in all categories.

Some users also provided more detailed feedback; for example, “I prefer to work in a

Linux environment, and LiVES is simply the best video editor around in this environment.”, “I

like the logic in LiVES which makes it feel fairly intuitive.”, “I am not a VJ, but I love the VJ

features. It makes LiVES even more fun to play around with - and boosts my creativity.”,

“LiVES is fast. In my normal environment it is much faster to work with than any other video

editor I have available or have access to.”, “The GUI is simple, yet complete. Lives does all I

need it to.”

7.3 RESULTS OF THE THIRD SURVEY

A third question asked the respondents: “What new features would you most like to see

developed in LiVES”. One user stated that they would like to see a graphic equaliser for audio.

In fact, this feature is already available through the use of LADSPA effects in LiVES, so

perhaps better documentation would be helpful here (this is a newer feature which is not

mentioned in the manual).

Figure 34: Documentation / Tutorials rating for LiVES

Source: Finch (2013)

1 2 3 4 5
0

1

2

3

4

5

6

7

Documentation / Tutorials (x axis) versus no. of respondents (y axis)

104

Another replied: “Multiple streams / engines running through one interface, each

engine with its own clip set, video out device and OSC port with a view window that show

each stream.”. Again this feature is already available to a large extent simply by running

multiple copies of LiVES simultaneously.

A third user responded: “audio reactive real-time effects”. This is somewhat possible

now in LiVES using data connections – LiVES has a “beat detector” audio plugin and the

output of this is available for use. A missing component would be a plugin to accept this

output and enable/disable various other effects and parameters in real-time. It can certainly be

connected to individual effects to produce some interesting results. Again, this is a newer

features which has not yet been well documented.

A fourth user mentioned a desire to see video mapping implemented in LiVES. This is

a difficult area not so much from a technical point of view but rather in terms of creating an

interface. However, this is an area which could be explored in the future.

7.4 RESULTS FROM DISCUSSIONS WITH SPECIALISTS

From discussions at the Piksel conferences, it was clear that three areas would benefit

users greatly from collaborative, open development amongst various Free Software packages.

These areas were: a framework for sending and receiving video frames in real-time between

various applications; a common set of video effects which could be used by any application

which wished to do so; and a common syntax for controlling programmatically various video

applications. The first of these areas remains to be fully implemented, however, the latter two

have been incorporated within the LiVES application.

• Sending/receiving frames between applications

The idea here was to have the ability to send video frames from one application to

another in real time, as was already possible with audio using Jack. Users would benefit from

having far greater flexibility in the way they worked with multiple tools. The tool would need

to be cross platform since the idea was to benefit as many users as possible. There exist some

105

tools to do this already, such as gstreamer52 and v4l, but each has drawbacks. Gstreamer is

heavily linked with the gnome window manager for Linux, and the developers felt that it

would be preferable to have an independent framework. V4l works well in some

circumstances, but it will only work on Linux, and since it is a kernel module it requires some

technical knowledge to set up.

Several developers expressed an interest in developing a version of Jack for video, and

work was begun on this. After the original developers seemed to lose interest, the author

himself picked up this project and rewrote much of the code, and attempted to publicise this

project, updating the videojack server code. The author also created demonstration videojack

sources and sinks for Pure Data, but due to unfamiliarity with the internals of that application,

was unable to implement coding and decoding of video frames. Attempts to get assistance

from the Pure Data community proved fruitless. In addition, keeping pace with the changes in

the audio version of Jack was too much effort, and the Jack developers were understandably

unwilling to commit an untested patch to the main branch of the audio sever. Despite this,

LiVES still supports videojack input and output and the code for videojack is still available53.

Figure 35 shows routing of connections via videojack being between two copies of LiVES,

using the standard qjackctrl application which has not been modified in any way.

52GSTREAMER website. Available at: <http://gstreamer.freedesktop.org/>. Accessed: 13 Jun. 2013.
53PROJECT page for videojack. Available at: <http://sourceforge.net/projects/videojack/>. Accessed: 13 Jun.
2013.

Figure 35: Videojack routing video frames from one copy of LiVES to
another

Source: Finch (2013)

106

• A common framework/repository of video effects

A second area of collaboration which was discussed was video effects. The aim here

was to create a common set of cross platform video effect plugins, in much the same way as

audio developers had done with LADSPA. The original name of the project was LiVidO –

Linux Video Objects. Users would benefit since rather than each project creating their own set

of plugins, all developers would be contributing to a common base. From an early version of

the LiVidO idea emerged frei0r. Eventually LiVidO itself was all but abandoned due to

disagreements amongst the developers regarding the final specification - only Veejay

currently implements what became the final LiVidO spec. The author himself reverted to the

penultimate version of the spec, and made some enhancements to produce the WEED

framework for LiVES. The frei0r project is still doing very well, with now well over a

hundred effects. The WEED library has had only a dozen or so minor changes in the seven

years since its conception, indicative of the excellence of the original collaborative design.

Figure 36: Humourous flyer for a development
conference / presentation, one of the events where the
author and others worked on the LiVidO spec.

Source: TOSTI TILBURG (2005)

107

• A common syntax for controlling video applications

The third area which was discussed as was thought to be useful to users was the

development of a common syntax for controlling video applications. Since a few video

applications were starting to implement OSC as a control protocol, the developers considered

that the best way to do this would be to work out jointly a common syntax to fit on top of

OSC. This initiative partially achieved its aim – a larger array of video applications do now

implement OSC. The author continued to discuss this initiative on the OSC mailing list;

however, interest for the common syntax dropped amongst other developers. Nevertheless, it

inspired the author to arrange and improve the OSC syntax within LiVES54.

55

7.5 RESULTS OF LIVES DEVELOPMENT

Here we examine some metrics which may help to illustrate the impact of LiVES on

the user community.

7.5.1 Estimates of the number of users

Obtaining an accurate figure for the number of LiVES users is difficult, since users are

not required to register in any way in order to download or use the application. In addition,

there are several sites which mirror the LiVES source code, and binary versions are packaged

for various Linux distributions.

However, there are some methods which can be used to make an educated guess.

54LiVES OSC commands. Available at: <http://openmediacontrol.wetpaint.com/page/LiVES+commands>.
Accessed: 13 Jun. 2013.
55As a personal note, the author believes it regrettable that later iterations of the Piksel Festival have been
focused almost exclusively on performance and very little on development. The early Piksel gatherings were a
great resource and a meeting of minds for Free Software video developers.

108

• Debian popcon

The Debian distribution packages new releases of LiVES, and the distro also contains

a tool called popcon (short for “popularity contest”). By means of this tool, users may inform

the Debian developers of which packages they have installed, and which of those they use on

a regular basis.

The popcon page for LiVES may be found easily by searching the popcon site56. Here

we can see that (at the time of writing), LiVES is installed on 0.61% of all machines as

registered by the popcon tool. Recent versions are installed on 0.56% of machines, with

0.07% of respondents using it regularly (the “vote” score).

The total number of Debian users is not known, but a mailing list thread57 suggests a

figure of between 360,000 and 1,000,000. If we assume a figure of 500,000, and that popcon

represents a typical sample of Debian users, this would signify about 1,000 LiVES users for

Debian, with perhaps 100 regular users.

Although Debian is a very popular Linux distro, it is only one of many. Assuming it

represents around 10% of the Linux (the table at the right on Distrowatch58 suggests this to be

about right), and making the assumption that Debian is typical of all Linux distros, this would

produce a figure of around 10,000 users, with 1,000 of those using it on a regular basis.

We have made some assumptions here: namely that popcon represents a typical

sample of Debian users, that Debian is a typical Linux distro, and that everybody who has

LiVES installed uses it, even if only occasionally. Nonetheless, this should be sufficient to

provide a very rough estimate.

However, this figure only accounts for binary packages of LiVES. Many LiVES users

prefer to download the source code and compile it themselves. To obtain an estimate for these

additional users, we need to use other means.

• The LiVES homepage

The main LiVES site registers around 3,000 downloads of source code per month,

56POPCON web page for LiVES. Available at: <http://qa.debian.org/popcon.php?package=lives>. Accessed: 13
Jun. 2013.
57FORUM post discussing estimates of user count for Debian. 2010. Available at:
<http://forums.debian.net/viewtopic.php?f=10&t=56773>. Accessed: 13 Jun. 2013.
58DISTROWATCH website. Available at: <http://distrowatch.com/>. Accessed: 13 Jun. 2013.

109

during those months where there is a new release. In addition there are various other sites

which also host the code – for example, a copy of the code is also available for download

directly from Sourceforge. A typical month might register about 400 - 800 downloads.59

An interesting statistic would be to look at the cumulative number of downloads from

one release to the next. Unfortunately such historic data is not collated. But, for example, for

the time period 1st May 2013 to 27th May 2013, there were 2,122 downloads of all versions of

LiVES for the sourcecode linked from the main LiVES website60– updated monthly. There

was no new release that month. Adding this to the approximately 3,000 downloads in April

(the month in which the release was updated) gives a running total of over 5,000 source code

downloads. Presumably there would be further downloads in June, July, etc. Adding in the

figures for Sourceforge gives an additional 730 downloads for a grand total of around 6,000

source code downloads. Naturally, one cannot assume that each person who downloads the

code actually compiles it and goes on to become a user, so therefore this figure should be

considered an upper estimate.

Nevertheless, taking all of the above figures into account, a rough estimate of the

number of LiVES users would be 10,000 – 20,000 with around 1,000 – 2,000 of those using it

on a regular basis, and around 100 – 200 using it very regularly.

7.5.2 Website visitors

According to Google Analytics, for the month of April 2013, the number of visits to

the LiVES homepage61 was measured at 10,774; of these, 9,455 were unique (non-repeat)

visitors. 88% of these visitors were new visitors, whilst 12% had visited the site previously

(Figure 37). The real figure is likely higher than this, since many browsers block Google

Analytics trackers. From the download statistics we know that about one third of those

visitors downloaded the source code.

The majority of visits were from Italy, with the USA in second place. This is followed

59LIVES download statistics, Sourceforge. Available at: <https://sourceforge.net/projects/lives/files/stats>.
Accessed: 13 Jun. 2013.
60LIVES download statistics for the current month. Available at: <http://salsaman.home.xs4all.nl/statistics.html>.
Accessed: 13 Jun. 2013.
61LIVES website. Available at: <http://lives.sourceforge.net>. Accessed: 13 Jun. 2013.

110

by visits from Germany, and the UK (Figure 38). In just the twelve days from 26 May 2013

until 7 Jun 2013 the website received visits from no fewer than 128 countries.62

62ANIMATED globe showing LiVES visitor locations. Available at:
<http://www.revolvermaps.com/?target=enlarge&i=220i2g5eeou&color=ff0000&m=0&ref=null>. Accessed: 13
Jun. 2013.

111

Figure 37: Worldwide visitors to the LiVES website for April 2013

Source: Google Analytics

112

Figure 38: Global distribution of visits to the LiVES website for the month of April 2013.

Source: Google Analytics

113

7.5.3 The lives-users mailing list

This is the main form of communication between LiVES users and the developer(s).

The mailing list has currently 143 members, which is consistent with around 1% of all users

or 10% of regular users given the estimates above – this does not seem an unreasonable value.

7.5.4 Reviews in the media

LiVES has received a few reviews in the media, and these have been overwhelmingly

positive.

The online journal Linux Insider (a subsidiary of ECT News Network, one of the

largest e-business and technology news publishers in the United States), released an article in

2012 entitled “LiVES: A Rich Video Editor With Layer Upon Layer of Features” in which the

author writes:

LiVES is an advanced video editor that can double as a video jockey (VJ) tool. It is

surprisingly powerful. But its interface makes it rather simple to learn. In fact, it has

so many feature levels that this app would be right at home as the video editor of

choice in any professional film editing studio.63

In another example, a Brazilian journalist reviewed LiVES and stated “LiVES is a free

(gratis) video editor, which possesses many special features and functions, placing it on a

professional level.)”64 65.

In 2009, Linux Journal (founded in 1994, and describing itself as “the original

magazine of the global Linux community”) released an article entitled “It LiVES! Video
63LINUX INSIDER online journal. Available at: <http://www.linuxinsider.com/story/74201.html>. Accessed: 13
Jun. 2013.
64LiVES é um editor de vídeos gratuito, que possui muitas funcionalidades e recursos especiais, colocando-o em
um patamar profissional.
65BAIXAKI website (Portuguese language). Available at:
<http://www.baixaki.com.br/linux/download/lives.htm>. Accessed: 13 Jun. 2013.

114

Editing For FOSS Movie Makers”66. The author of the article describes the features in the

then-current version of LiVES and concludes: “Simply stated, LiVES is terrific.”

In 2008, the pod-cast website hackerpublicradio gave LiVES a glowing review67.

A lesser known website has a review which finishes with the conclusion

LiVES allows you to create very high quality video in a way that's easy to manage and

effective. It offers many advantages to the modern video jockey and editor alike.68

LiVES is frequently listed amongst the top Free/Open Source video applications, for

example: (site 169), (site 270).

In 2007, a widely read independent magazine for the Ubuntu distribution, Full Circle,

listed LiVES amongst the top five audiovisual applications for Ubuntu71.

7.5.5 Awards

LiVES has won a few awards, including:

• in 2012, LiVES was selected as Project of the Month by the Distrowatch site.

• in 2009, LiVES was voted one of the 10 finalists for the category Best Multimedia

Application in the Sourceforge Community Choice Awards.

• in 2008-2009, the non-profit LinuxFund helped to raise more than $7,000 to help fund

66LINUX JOURNAL article. Available at: <http://www.linuxjournal.com/content/it-lives-video-editing-foss-
movie-makers>. Accessed: 13 Jun. 2013.
67HACKERPUBLICRADIO episode 114, audio recording. Available at:
<http://www.hackerpublicradio.org/eps.php?id=0114>. Accessed: 13 Jun. 2013.
68<http://www.steves-digicams.com/knowledge-center/how-tos/video-software/video-editing-tools-an-
introduction-to-lives.html>. Accessed: 13 Jun. 2013.
69EXAMPLE website. Available at:
<http://wolfcrow.com/blog/a-quick-guide-to-the-5-best-open-source-video-editing-software/>. Accessed: 13 Jun.
2013.
70EXAMPLE website. Available at: <http://www.smallbusinesscomputing.com/ProductReviews/Software/5-
best-open-source-video-editors-for-small-business-2.html>. Accessed: 13 Jun. 2013.
71FULL CIRCLE MAGAZINE issue 7. 2007. Available at: <http://fullcirclemagazine.org/issue-7/>. Accessed: 13
Jun. 2013.

115

LiVES development.

7.5.6 Uses of LiVES

LiVES can run under Linux, Mac OSX, BSD and Irix (a Windows version is currently

in development). It has been tested and runs well on a range of hardware from large, multi-

core servers down the humble Raspberry Pi (Figure 39).

Figure 36: LiVES running on the Raspberry Pi

Source: courtesy VJ Pixel

LiVES is included in at least two live distributions: Dynebolic72 and AVLinux73. This

gives users the opportunity to use the application even without having to install a copy of

Linux – it can be run from a bootable DVD or USB stick.

Saul Goode has created a set of rendered effects plugins74.

The application has been used in numerous shows and performances, including:

• The Waag, Amsterdam, Netherlands (2004)

• Riereta, Barcelona, Spain (2004)

72DYNEBOLIC website. Available at: <http://www.dynebolic.org/>. Accessed: 13 Jun. 2013.
73AVLINUX website. Available at: <http://www.bandshed.net/AVLinux.html>. Accessed: 13 Jun. 2013.
74GOODE, S. Third party plugins for LiVES. Available at:
<http://chiselapp.com/user/saulgoode/repository/RFX-GIMP/home>. Accessed: 13 Jun. 2013.

116

• RunMe City Camp, in Aarhus, Denmark. LiVES was used for the closing VJ set,

performed in conjunction with Alexei Shulgin75 and Victor Soroka.

• HAIP 06, Ljubljana, Slovenia. Performance with Kentaro Fukuchi. (2006)76

• Festival de Invierno, Garanhuns, Brazil. Performance with Futuriveis/mediasana.

(2007)

• Tipoia Festival, Brazil. Performance with Orquestra Contemporaneia de Olinda.

(2007)77

• Campus Party Brazil. Collaborative performance with VJ Pixel, 200978 79 80

• An installation of randomised clips and effects using LiVES ran interrupted for 30

days. Tilburg, Netherlands, 2005.

Clips created with LiVES have also had some success:

• Follow Love (salsaman) was shown at the .screen exhibition in the Teatergarasjen,

Bergen, Norway (2004)

• A clip edited with LiVES was shown on Rotterdam TV (10/07/2004)

• Two clips produced by Marco de la Cruz using LiVES: "Time After Time" and

"Anthem Part 2" were shown at Animaritime 2004 (New Brunswick, Canada)

• A poetic clip entitled “Before the Uncreation”81 (salsaman and Karima Hoisan) has

been viewed over 10,000 times.

7.5.7 Reactions from users

75WIKIPEDIA, Alexei Shulgin biography. Available at: <http://en.wikipedia.org/wiki/Alexei_Shulgin>.
Accessed: 13 Jun. 2013.
76VIDEO clip of “Effect LiVES”. Available at: <http://video.kiberpipa.org/media/HAIP06_Effect_Lives/>.
Accessed: 13 Jun. 2013.
77<http://www.youtube.com/watch?v=7_sJ8ZUeK7U>. Accessed: 13 Jun. 2013..

78<http://www.youtube.com/watch?v=bvF8q6gNdqM>. Accessed: 13 Jun. 2013.
79<http://www.youtube.com/watch?v=RseN7XbvRuw>. Accessed: 13 Jun. 2013.
80<http://www.youtube.com/watch?v=FlbJ6iq_QBY>. Accessed: 13 Jun. 2013.
81<http://www.youtube.com/watch?v=kpG6A-2fP4s>. Accessed: 13 Jun. 2013.

117

One user writes:

The integrated video editing & VJ playback was the main thing[s] that brought me

to LiVES...[I] Didn't really have the time for the usual dance with a separate editing

app, making clips as new files (usually involves clumsyfying [sic] re-encoding too),

and then making the setup in a performance app.

(<http://studio.kyperjokki.fi/engine/LivesExperience>. Accessed: 13 Jun. 2013.)

Finally, on the Sourceforge project page for LiVES82, some users have left short

comments:

“What necessary words... super, a magnificent idea”, “It works. It supports pretty much

everything you can think of. It doesn't crash in the hands of a casual use[r]”, “Perfect open

source project! 10X!”

82USER comments for LiVES, sourceforge. Available at:
<http://sourceforge.net/projects/lives/reviews/?sort=usefulness&filter=all#reviews-n-ratings>. Accessed: 13 Jun.
2013.

118

8 CONCLUSIONS

In summary, we believe that this dissertation provides a valuable contribution, firstly

by examining the needs of a wide range of users of video processing tools, and then by

examining a possible solution which would satisfy those requirements.

Feedback received demonstrates LiVES' unique and wide ranging contribution to the

field of video processing. It satisfies the technical requirements of a large range of users, in

particular those of what we term “Experimental VJs”. It provides a high level of user

friendliness with an extensive feature set which caters to various classes of user. Some of

these features are unique to the application. In addition, LiVES generally received a high

rating for performance and stability. At the same time, it is developed as a free/open source

application, which enables rapid customisation and experimentation with the code. LiVES has

reached a fairly wide audience in demographic terms, and has received a great deal of praise

in the media.

8.1 FUTURE WORK

There is surely a lot of potential for LiVES to increase further in terms of user base

and in terms of additional features. Given the popcon figure of less than 1% of Debian users

having the application installed, there is presumably a lot of room for growth. In particular, it

would benefit LiVES development greatly to have a larger number of developers involved.

The core LiVES code can be utilised in many ways – as a VJ tool, as a multitrack editing tool,

as a video server, as a video programming environment, as an online video editing service,

and as a digital signal processor. With a larger development team, each of these facets could

be pursued in far greater depth, whilst still leveraging the common core code. In addition, the

heavy use of plugins in LiVES can enable some developers to work on plugins without the

necessity to involve themselves in the core code.

 Regarding the requirements side of LiVES, it would be useful to have a more

complete understanding of the needs of the target user base and to compile a more extensive

list of use cases (currently in use and desired use cases). A good way to achieve this would be

119

face-to-face meetings with existing users. It has long been the desire of the author to organise

a LiVES user group conference, however a lack of resources for the project has prevented this

from occurring.

Nevertheless, LiVES continues the tradition begun by such equipment as the Video

Toaster, FM Towns, and the software practices of the demoscene coders.

Kathleen Forde (2005), interviewed for “The VJ Book”, perhaps sums this up the best:

If you look at the development of the software that live visual artists use from a time-line
perspective, you can see a real influence of what came before and what after, a clear evolution.
Research and design and programming and software are their own art form… We're getting to
a point where the research and the process of creating tools that enable more artwork to be
made is, to me, almost an extension of Performance as Object-- sometimes that's as much of an
artistic moment as many of the objects, performances, and scores, that come out of it.
(FORDE, 2005, p. 39–40).

120

REFERENCES

BOEHM, B.; TURNER, R. Balancing agility and discipline: a guide for the perplexed.
Boston MA: Addison-Wesley, 2003. p. 55–57.

CHATLEY, R.; EISENBACH, E.; MAGEE, J. Painless plugins. London: Imperial College,
2003. Available at: <http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.137.3509&rep=rep1&type=pdf>. Accessed: 13 Jun. 2013.

ÐURKOVIĆ, J.; VUKOVIĆ, V.; RAKOVIĆ, L. Open source approach in software
development: advantages and disadvantages. In: Management Information Systems,
Armonk, NY, v. 3, n. 2, p. 29-33, 2008.

FORDE, K. Interview. In: SPINRAD, P. The VJ book: inspirations and practical advice for
live visuals performance. Los Angeles, CA: Feral House, 2005. p. 39-40.

FUKUCHI K.; MERTENS S.; TANNENBAUM E. EffecTV: a real-time software video effect
processor for entertainment. In: Lecture Notes in Computer Science. Berlin: Springer-
Verlag, v. 3166, p. 602-605, 2004.

IBM. Use cases, best practices, 2003. Available at:
<http://www.ibm.com/developerworks/rational/library/content/03July/2500/2784/2784_use_c
ases.pdf>. Accessed: 13 Jun 2013.

JÁCOME, J. Sistemas interativos de tempo real para processamento audiovisual
integrado. 2007. 127 p. Dissertation (Masters in Computer Science) – Centro de Informática,
Universidade Federal de Pernambuco, Recife. Available at:
<http://jarbasjacome.files.wordpress.com/2009/04/dissertacao_vimus_jarbasjacome2007.pdf>
. Accessed: 13 Jun 2013.

MANOVICH, L. Cinematic and graphic: cinegratography. In: ______ The Language of new
media. Cambridge, MA: MIT Press, 2001. p. 309-330.

MAYER J. Graphical user interfaces composed of plug-ins. In: EUROPEAN GCSE YOUNG
RESEARCHERS WORKSHOP, 4TH, 2002, Erfurt, Germany. Proceedings. Kaiserslautern,
Germany: Fraunhofer IESE, 2002. p. 28-32.

MAYER J.; MELZER I.; SCHWEIGGERT F. Lightweight plug-in-based application
development. In: Lecture Notes in Computer Science. Berlin: Springer-Verlag, v. 2591, p
87-102, 2002.

MAYER-PATEL K. D. A Parallel software-only video effect processing system. Berkeley:
University of California, 1999. Department of Computer Science. Available at:
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.3166>. Accessed: 1 Jul. 2013.

MILES, A. Programmatic statements for a facetted videography. In: LOVINK, G.;
NIEDERER, S. Video vortex reader: responses to YouTube. Amsterdam: Institute of
Network Cultures, 2008. p. 223-230. Available at:
<http://networkcultures.org/wpmu/portal/publications/inc-readers/videovortex/>. Accessed:

121

25 Sep. 2013.

NUSEBEIH B. Weaving together requirements and architecture. In: IEEE Computer, Los
Alamitos, CA, v. 34, n. 3, p. 115–117, 2001. Available at:
<http://mcs.open.ac.uk/ban25/papers/computer2001.pdf>. Accessed: 13 Jun. 2013.

RAYMOND, E. The Cathedral and the bazaar. Sebastopol, CA: O'Reilly Media, 1999.

SHERMAN, T. Vernacular video. In: LOVINK, G.; NIEDERER, S. Video vortex reader:
responses to YouTube. Amsterdam: Institute of Network Cultures, 2008. p. 161-168.

SPINRAD, P. Introduction. In: ______ The VJ book: inspirations and practical advice for
live visuals performance. Los Angeles, CA: Feral House, 2005. p 13-15.

122

APPENDIX A - Definitions

• MIDI83

MIDI is Musical Instrument Digital Interface, a technical standard that describes a

protocol, digital interface and connectors and allows a wide variety of electronic instruments,

computers and other related devices to connect and communicate with one another. MIDI

technology was standardized in 1983.

• OSC84

OSC is Open Sound Control – a network control protocol originally used to control

audio applications. More recently it is becoming ever more widely used to control video

applications.

• Firewire85

Firewire, also known as the IEEE 1394 interface is a serial bus interface standard for

high-speed communications and isonchronous real-time data transfer. It is used by many

cameras to transfer video and audio material to a computer or other device.

• Jack86

The Jack Audio Toolkit - JACK is system for handling real-time, low latency audio. It

has an audio part for connecting audio between devices and applications, and a transport part,

for synchronised playback.

• Frei0r87

Frei0r is a simple, open source, cross platform framework for video effects. It provides

filters, mixers and generators by means of minimalistic plugin API. The behaviour of the

effects can be controlled from the host through simple parameters. The intent is to solve the

recurring reimplementation or adaptation issue of standard video effects.

• LADSPA88

83WIKIPEDIA, MIDI. Available at: <http://en.wikipedia.org/wiki/MIDI>. Accessed: 13 Jun. 2013.
84ABOUT OSC. Available at: <http://opensoundcontrol.org/introduction-osc>. Accessed: 13 Jun. 2013.
85WIKIPEDIA, FireWire. Available at: <http://en.wikipedia.org/wiki/Firewire>. Accessed: 13 Jun. 2013.
86JACK Audio Toolkit website. Available at: <http://jackaudio.org/>. Accessed: 13 Jun. 2013.
87WIKIPEDIA Frei0r. Available at: <http://en.wikipedia.org/wiki/Frei0r>. Accessed: 13 Jun. 2013.
88LADSPA website. Available at: <http://www.ladspa.org/>. Accessed: 13 Jun. 2013.

123

LADSPA is a standard and framework that allows software audio processors and

effects to be plugged into a wide range of audio synthesis and recording packages. There is a

large number of open source plugins which have been written using this framework.

• v4l89

V4l (video for Linux) is a module for the Linux kernel. By connecting with this

module, it possible for any application which produces video output to appear to the system as

if it were a hardware web camera. This in turn implies that the application can be used an

input source for other programs which work with web-cams, without requiring any changes in

the second program.

The terms “Free Software” and “Open Source Software” are sometimes a source of

confusion. The terms are sometimes used interchangeably, but in fact they describe different

processes.

• Open Source Software

Open Source Software is software where the source code is freely available (i.e.,

without any requirement for payment or any other obstacles) for anybody to inspect and study.

• Free Software

Free Software is a type of Open Source Software, but it also guarantees more freedom for the

user. Free Software is software for which everyone has the right not only to inspect and study

the source code but also to use it for any desired purpose, including the right to redistribute it,

without monetary or other restrictions.

Note that “Free” here is used in the sense of “Freedom of Speech” (libre), not

necessarily in the sense of “Free from payment” (gratis).90

In addition, copyleft licenses require that these same freedoms are passed on to

subsequent users. Therefore, each time a binary is passed on (distributed) it must be

accompanied by the source code, and must maintain the original license.

89ABOUT Video4Linux. Available at: <http://en.wikipedia.org/wiki/Video4Linux>. Accessed: 13 Jun. 2013.
90 This may at first appear confusing given that we mentioned the phrase “without monetary or other
restrictions”. However, this freedom only applies to users who have legally obtained a copy of the source code.
Therefore, the original developer (copyright holder) can charge others a fee to obtain an original copy of the
code.

124

APPENDIX B - The Questionnaire

125

126

127

PerformanceStability555555554555545
44324544443133234444Kdenlive4344233223none44444
32544Kdelive43433OpenShot45444KDELive44443kdenlive33333

Feature completenessUser friendlinessDocumentation / tutorialsWhich existing features in LiVES are most important to you ?How did you discover LiVES ?What other video editing applications do you use regularly (if any) ?Are there any features you would like to see added to LiVES ?Price, Level of support, Frequency of releases / bugfixes, Linux support, Ability to edit individual frames, Ease of use, Stability, Range/quality of output formats, Control of playback at different rates, Clip editing features, Crash recoverySuggested to me by someone on the alt.os.linux.mandriva newsgroup when I was looking for an application that I can view individual frames with.Price, Realtime effects, MIDI/joystick interface, Ease of useCampus Party, maior evento de tecnologia do mundoFFmpeg, kdenlive, @pen Shot, cinelerra, cs6Mapeamento de imagensLinux support, Firewire input, Realtime effects, Ease of use, Stability, Ability to record realtime performances, Wide range of input formats, Range/quality of output formats, Control of playback at different rates, Crash recovery, Multi monitor support, Jack audio integration, Subtitle support, Multitrack EditingI searched sourceforge for videoeditorsNot regularly, but occasionally I use OpenShot, iMovie, Premiere and PinnacleWe all love new toys, don't we? But do we really NEED them?Maybe some kind of equalizer for better control of sound
Linux support, Ability to edit individual frames, Realtime effects, Stability, Ability to record realtime performances, Frei0r compatibility, Clip editing features, Crash recovery, Multi monitor support, Jack audio integration, Subtitle supportI discovered LiVES when I was search for a video editor to create AMV's. A simple Google search revealed its existence to me and I've been using it ever since.Sony Vegas and OpenShotThe main one I'd like to see is an unlimited undo that works in the clip editor. I know this feature is there in multitrack but having it available in the clip editor would be a HUGE improvement in my opinion and help the software's adoption. Price, Linux support, Accessibility of code, Realtime effects, Ease of use, Stability, Multi monitor supportLinux support, Ability to edit individual frames, Realtime effects, OSC control, Ease of use, Stability, Frei0r compatibility, Control of playback at different rates, Jack audio integration, Themes / appearancekdenliveblenderimprove interfaceLevel of support, Linux support, Realtime effects, OSC control, Ease of use, Frei0r compatibility, Wide range of input formatsI need a live video system, and i search what i can use with linux. And so after several trys, i liked livesLinux support, Stability, Frei0r compatibility, Jack audio integrationBy searching "video edit linux"Linux support, Ability to edit individual frames, Realtime effects, Ease of use, Stability, Range/quality of output formats, Clip editing features, Crash recovery, Multitrack editingI have testing many software in Debian distribI have problems with the latest versions. The melted deteriorated after some updates and I'm looking for overlay effects that I can not do.Level of support, Linux support, Webcam/TV card input, Audio plugins, Realtime effects, MIDI/joystick interface, Ease of use, Ability to record realtime performances, Frei0r compatibility, v4l2 compatibility, Control of playback at different rates, Clip editing features, Multitrack editingdiscovered lives in the dynebolic distro.audio reactive realtime effects.
Level of support, Linux support, Realtime effects, MIDI/joystick interface, Ease of use, Stability, Wide range of input formats, Crash recovery
In 2004 I did VJ in the CC launch in Brazil, as part of FISL. At that time, I decided to invite some local VJs, but the software I was using doesn't had a easy way to
run on Windows. When I looked for a solution, I've found that dyne:bolic come with LiVES and used it for the presentation (both in my computer and the computers of the other VJs).Possibility to have preview of videos before sending them to the main screen.Level of support, Linux support, Accessibility of code, Ability to edit individual frames, Webcam/TV card input, Realtime effects, OSC control, v4l2 compatibility, Wide range of input formats, Range/quality of output formatsInternet search- Multiple streams / engines running trough one interface, each engine with it's own clip set, video out device and OSCP port with a view window that show each stream.- validation/test of clip set in case of file corruption. (causes crashes)Linux support, Ability to edit individual frames, Audio plugins, Stability, Jack audio integrationI was searching for a Linux based video editor to "play with."None come to mind, but I am a relative new comer to video editing.Level of support, Frequency of releases / bugfixes, Linux support, Accessibility of code, Webcam/TV card input, Firewire input, Realtime effects, OSC control, MIDI/joystick interface, Stability, Frei0r compatibility, v4l2 compatibility, Jack audio integration, Themes / appearancewhit dynebolic yes mlt support

128

APPENDIX C - Questionnaire Results

Feature
completeness

User friendliness Performance Stability
Documentatio

n / tutorials

Which existing
features in
LiVES are

most important
to you ?

How did you
discover
LiVES ?

What other
video editing

applications do
you use

regularly (if
any) ?

Are there any
features you

would like to see
added to
LiVES ?

5 5 5 5 5

Price, Level
of support,
Frequency of
releases /
bugfixes,
Linux
support,
Ability to edit
individual
frames, Ease
of use,
Stability,
Range/quality
of output
formats,
Control of
playback at
different rates,
Clip editing
features,
Crash
recovery

Suggested to
me by
someone on
the
alt.os.linux.m
andriva
newsgroup
when I was
looking for
an application
that I can
view
individual
frames with.

5 5 5 4 5

Price,
Realtime
effects,
MIDI/joystick
interface, Ease
of use

Campus
Party, maior
evento de
tecnologia do
mundo

FFmpeg,
kdenlive,
@pen Shot,
cinelerra, cs6

Mapeamento de
imagens

129

Feature
completeness

User friendliness Performance Stability
Documentatio

n / tutorials

Which existing
features in
LiVES are

most important
to you ?

How did you
discover
LiVES ?

What other
video editing

applications do
you use

regularly (if
any) ?

Are there any
features you

would like to see
added to
LiVES ?

5 5 5 4 5

Linux support,
Firewire
input,
Realtime
effects, Ease
of use,
Stability,
Ability to
record
realtime
performances,
Wide range of
input formats,
Range/quality
of output
formats,
Control of
playback at
different rates,
Crash
recovery,
Multi monitor
support, Jack
audio
integration,
Subtitle
support,
Multitrack
Editing

I searched
sourceforge
for
videoeditors

Not regularly,
but
occasionally I
use OpenShot,
iMovie,
Premiere and
Pinnacle

We all love
new toys, don't
we? But do we
really NEED
them?

4 4 3 2 4

Linux support,
Ability to edit
individual
frames,
Realtime
effects,
Stability,
Ability to
record
realtime
performances,
Frei0r
compatibility,
Clip editing
features, Crash
recovery,
Multi monitor
support, Jack
audio
integration,
Subtitle
support

I discovered
LiVES when
I was search
for a video
editor to
create
AMV's. A
simple
Google
search
revealed its
existence to
me and I've
been using it
ever since.

Sony Vegas
and OpenShot

The main one
I'd like to see is
an unlimited
undo that works
in the clip
editor. I know
this feature is
there in
multitrack but
having it
available in the
clip editor
would be a
HUGE
improvement in
my opinion and
help the
software's
adoption.

5 4 4 4 4

Price, Linux
support,
Accessibility
of code,
Realtime
effects, Ease of
use, Stability,
Multi monitor
support

130

Feature
completeness

User friendliness Performance Stability
Documentatio

n / tutorials

Which existing
features in
LiVES are

most important
to you ?

How did you
discover
LiVES ?

What other
video editing

applications do
you use

regularly (if
any) ?

Are there any
features you

would like to see
added to
LiVES ?

3 1 3 3 2

Linux support,
Ability to edit
individual
frames,
Realtime
effects, OSC
control, Ease
of use,
Stability,
Frei0r
compatibility,
Control of
playback at
different rates,
Jack audio
integration,
Themes /
appearance

kdenlive

3 4 4 4 4

Level of
support, Linux
support,
Realtime
effects, OSC
control, Ease
of use, Frei0r
compatibility,
Wide range of
input formats

I need a live
video
system, and i
search what i
can use with
linux. And so
after several
trys, i liked
lives

Kdenlive

4 3 4 4 2

Linux support,
Stability,
Frei0r
compatibility,
Jack audio
integration

By searching
"video edit
linux"

3 3 2 2 3

Linux support,
Ability to edit
individual
frames,
Realtime
effects, Ease
of use,
Stability,
Range/quality
of output
formats, Clip
editing
features, Crash
recovery,
Multitrack
editing

I have testing
many
software in
Debian
distrib

none

I have
problems with
the latest
versions. The
melted
deteriorated
after some
updates and I'm
looking for
overlay effects
that I can not
do.

131

Feature
completeness

User friendliness Performance Stability
Documentatio

n / tutorials

Which existing
features in
LiVES are

most important
to you ?

How did you
discover
LiVES ?

What other
video editing

applications do
you use

regularly (if
any) ?

Are there any
features you

would like to see
added to
LiVES ?

4 4 4 4 4

Level of
support,
Linux
support,
Webcam/TV
card input,
Audio
plugins,
Realtime
effects,
MIDI/joystick
interface,
Ease of use,
Ability to
record
realtime
performances,
Frei0r
compatibility,
v4l2
compatibility,
Control of
playback at
different
rates, Clip
editing
features,
Multitrack
editing

discovered
lives in the
dynebolic
distro.

audio reactive
realtime effects.

3 2 5 4 4

Level of
support,
Linux
support,
Realtime
effects,
MIDI/joystick
interface,
Ease of use,
Stability,
Wide range of
input formats,
Crash
recovery

In 2004 I did
VJ in the CC
launch in
Brazil, as part
of FISL. At
that time, I
decided to
invite some
local VJs, but
the software I
was using
doesn't had a
easy way to
run on
Windows.
When I
looked for a
solution, I've
found that
dyne:bolic
come with
LiVES and
used it for the
presentation
(both in my
computer and
the computers
of the other
VJs).

Kdelive

Possibility to
have preview of
videos before
sending them to
the main screen.

132

Feature
completeness

User friendliness Performance Stability
Documentatio

n / tutorials

Which existing
features in
LiVES are

most important
to you ?

How did you
discover
LiVES ?

What other
video editing

applications do
you use

regularly (if
any) ?

Are there any
features you

would like to see
added to
LiVES ?

4 3 4 3 3

Level of
support, Linux
support,
Accessibility
of code,
Ability to edit
individual
frames,
Webcam/TV
card input,
Realtime
effects, OSC
control, v4l2
compatibility,
Wide range of
input formats,
Range/quality
of output
formats

Internet
search

OpenShot

- Multiple
streams /
engines running
trough one
interface, each
engine with it's
own clip set,
video out device
and OSCP port
with a view
window that
show each
stream.

4 5 4 4 4

Linux support,
Ability to edit
individual
frames, Audio
plugins,
Stability, Jack
audio
integration

I was
searching for
a Linux
based video
editor to
"play with."

KDELive

None come to
mind, but I am a
relative new
comer to video
editing.

4 4 4 4 3

Level of
support,
Frequency of
releases /
bugfixes,
Linux support,
Accessibility
of code,
Webcam/TV
card input,
Firewire
input,
Realtime
effects, OSC
control,
MIDI/joystick
interface,
Stability,
Frei0r
compatibility,
v4l2
compatibility,
Jack audio
integration,
Themes /
appearance

whit
dynebolic

kdenlive yes mlt support

3 3 3 3 3

	This may at first appear confusing given that we mentioned the phrase “without monetary or other restrictions”. However, this freedom only applies to users who have legally obtained a copy of the source code. Therefore, the original developer (copyright holder) can charge others a fee to obtain an original copy of the code.
	1 INTRODUCTION 10
	2 THE PROBLEM AND REQUIREMENTS FOR ITS SOLUTION 14
	2.1 ADVANTAGES 14
	2.2 REQUIREMENTS 16
	3 AN OVERVIEW OF VIDEO PROCESSING APPLICATIONS 18
	3.1 VJ APPLICATIONS 18
	3.1.1 Example applications 22
	3.2 VIDEO EDITING APPLICATIONS 25
	3.2.1 Example applications 26
	3.3 VIDEO PROGRAMMING ENVIRONMENTS 31
	3.3.1 Example applications 32
	3.4 ACADEMIC PROJECTS 37
	4 METHODOLOGY 40
	4.1 ANALYSIS OF VIDEO APPLICATIONS 41
	4.2 CONFERENCES AND SEMINARS 41
	4.3 CROSS-REFERENCE OF APPLICATIONS 42
	4.4 METHODOLOGY - FLOWCHART 45
	5 THE CONCEPT OF LIVES 56
	5.1 FUNCTIONAL REQUIREMENTS 56
	5.2 NON-TECHNICAL REQUIREMENTS 59
	5.3 CHALLENGES 60
	6 LIVES 63
	6.1 THE HISTORY OF LIVES 63
	6.2 THE PHILOSOPHY OF LiVES 63
	6.3 THE LIVES COMMUNITY 64
	6.4 EQUIVALENT COMMERCIAL DEVELOPMENT 65
	6.5 THE ARCHITECTURE OF LIVES 65
	6.5.1 Functional overview 66
	6.5.2 Technical overview 74
	6.5.3 Plugins 76
	6.5.4 Optimisations, concurrency 80
	6.5.5 Language breakdown. 80
	6.6 UNIQUE FEATURES 81
	7 RESULTS AND VALIDATION 90
	7.1 VALIDATION OF TECHNICAL FEATURES 90
	7.1.1 Qualitative responses 96
	7.2 VALIDATION OF NON-SPECIFIC REQUIREMENTS 100
	7.3 RESULTS OF THE THIRD SURVEY 103
	7.4 RESULTS FROM DISCUSSIONS WITH SPECIALISTS 104
	7.5 RESULTS OF LIVES DEVELOPMENT 107
	7.5.1 Estimates of the number of users 107
	7.5.2 Website visitors 109
	7.5.3 The lives-users mailing list 113
	7.5.4 Reviews in the media 113
	7.5.5 Awards 114
	7.5.6 Uses of LiVES 115
	7.5.7 Reactions from users 116
	8. CONCLUSIONS 118
	8.1 FUTURE WORK 118
	REFERENCES 120
	APPENDIX A 122
	APPENDIX B 124
	APPENDIX C 128
	It is also clear from the list of more common applications given above, that Linux users are poorly served, especially in the area of VJ applications and video programming environments (PD and Veejay being the obvious exceptions). Although Linux is still considered a minority operating system, it nevertheless represents an important segment of the community.
	The advantages of a Free (Open) Source implementation and the process behind it have been described by many, including Ðurković, Vuković and Raković (2008). Regarding the development process, they note:
	The Open Source model does not function well in the early stages, since many complex design decisions must be made, and spending too much time discussing these would likely impede the progress of the project. The initial prototype planning is generally not done publicly, but rather, is done by one individual or a small group. In this way, the design can also be kept consistent. However, this does imply that some decisions for the design must be postponed until later in the project.
	Open Source projects generally follow a model of prototype development, where the initial project gradually advances in iterations. This allows for greater flexibility, especially during the early development process.
	The code advances in small but constant changes, with fairly frequent version releases. As the project becomes more widely used, feedback received from experts and users can be employed to repair bugs and to extend the capabilities and feature set of the project.
	As the project expands, the rate of bug reports increases – many users can find many bugs. As these bugs are corrected, the software becomes more stable. At the same time, more users means more feature requests; satisfying these new requirements increases the capabilities of the software. However, the scope and the focus of the project must be maintained.
	The availability of the code allows participants with varying skills and experience to enter the development process, and to do so in a decentralised manner. In respect of this, it is essential that additions and amendments to the main code base be reviewed carefully by the core development team before they are included. This ensures that a high level of quality is maintained throughout the evolution of the application. The basic principle guiding this is a system of trust which arises naturally. More experienced and more talented code authors are granted a higher level of responsibility and authority in the project.
	Ideally, such a program would also be Open Source, as this would allow for the system to be customised rapidly and easily, and would allow for experimentation at the level of code, and provide adaptability for unknown situations. Use of the Open Source model should also result in a higher level of stability and feature completeness, since it opens the code base up to a wide range of contributors. It would also provide the users with peace of mind, knowing that the code will always be available, regardless of the success or failure of the developers. 40
	APPENDIX A - Definitions
	The terms “Free Software” and “Open Source Software” are sometimes a source of confusion. The terms are sometimes used interchangeably, but in fact they describe different processes.
	Open Source Software
	Open Source Software is software where the source code is freely available (i.e., without any requirement for payment or any other obstacles) for anybody to inspect and study.
	Free Software
	Free Software is a type of Open Source Software, but it also guarantees more freedom for the user. Free Software is software for which everyone has the right not only to inspect and study the source code but also to use it for any desired purpose, including the right to redistribute it, without monetary or other restrictions.
	Note that “Free” here is used in the sense of “Freedom of Speech” (libre), not necessarily in the sense of “Free from payment” (gratis).90
	In addition, copyleft licenses require that these same freedoms are passed on to subsequent users. Therefore, each time a binary is passed on (distributed) it must be accompanied by the source code, and must maintain the original license.
	APPENDIX B - The Questionnaire
	APPENDIX C - Questionnaire Results

